
Lecture 8: Bayesian Networks

• Bayesian Networks

• Inference in Bayesian Networks
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Bayes nets
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• The nodes represent random variables

• The arcs represent “influences”

• At each node, we have a conditional probability distribution (CPD) for
the corresponding variable given its parents
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Factorization

• Let G be a DAG over random variables variables X1, . . . , Xn

• We say that a joint probability distribution P factorizes according to G
if it can be expressed as a product:

P (x1, . . . , xn) =

n∏
i=1

p(xi|xπi),∀xi ∈ Dom(Xi)

where Xπi denotes the parents of Xi in the graph

• The individual factors P (Xi|Xπi) are called local probabilistic models or
conditional probability distributions (CPD)

• Naive Bayes and Gaussian discriminant models are special cases of this
type of model

COMP-652 and ECSE 608, Lecture 8 - January 31, 2017 3



Complexity of a factorized representation

• If k is the maximum number of ancestors for any node in the graph, and
we have binary variables, then every conditional probability distribution
will require ≤ 2k numbers to specify

• The whole joint distribution can then be specified with ≤ n ·2k numbers,
instead of 2n

• The savings are big if the graph is sparse (k � n).
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Types of local parametrization

• Tables (if both parents and the node are discrete)

• Tree-structured CPDs (if all nodes are discrete, but the conditional is
not always dependent on all the parents)

• Gaussians (for continuous variables)

• Mixture of Gaussians

• ....
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Applications of Bayes nets

• Medical diagnosis

• Bioinformatics (data integration)

• Risk assessment

• Environmental science (e.g., wildlife habitat viability, risk of foreign
species invasion)

• Analysis of demographic data

• In general, diagnosis and causal reasoning tasks

• Many commercial packages available (e.g. Netica, Hugin, WinMine, ...)

• Sometimes Bayes net technology is incorporated in business software
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Example: Pathfinder (Heckermann, 1991)

• Medical diagnostic system for lymph node diseases

• Large net! 60 diseases, 100 symptoms and test results, 14000 probabilities

• Network built by medical experts

– 8 hours to determine the variables
– 35 hours for network topology
– 40 hours for probability table values

• Experts found it easy to invent causal links and probabilities

• Pathfinder is now outperforming world experts in diagnosis

• Commercialized by Intellipath and Chapman Hall Publishing; extended
to other medical domains
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Implied independencies in Bayes nets: “Markov chain”
YX Z

• Think of X as the past, Y as the present and Z as the future
• This is a simple Markov chain
• Based on the graph structure, we have:

p(X,Y, Z) = p(X)p(Y |X)p(Z|Y )

• Hence, we have:

p(Z|X,Y ) =
p(X,Y, Z)

p(X,Y )
=
p(X)p(Y |X)p(Z|Y )

p(X)p(Y |X)
= p(Z|Y )

Hence, X⊥⊥Z|Y
• Note that the edges that are present do not imply dependence. But the

edges that are missing do imply independence.
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Implied independencies in Bayes nets: “Common cause”

Z

Y

X

p(X|Y,Z) =
p(X,Y, Z)

p(Y,Z)
=
p(Y )p(X|Y )p(Z|Y )

p(Y )p(Z|Y )
= p(X|Y )

• Based on this, X⊥⊥Z|Y .

• This is a “hidden variable” scenario: if Y is unknown, then X and Z
could appear to be dependent on each other
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Implied independencies in Bayes nets: “V-structure”

Y

X Z

• In this case, the lacking edge between X and Z is a statement of
marginal independence: X⊥⊥Z.

• In this case, once we know the value of Y , X and Z might depend on
each other.

• E.g., suppose X and Z are independent coin flips, and Y is true if and
only if both X and Z come up heads.

• Note that in this case, X is not independent of Z given Y !

• This is the case of “explaining away”.
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Rules for information propagation
Recall: Base rules for propagating information

• Head-to-tail

Y known, path blocked

X Y Z X Y Z

Y unknown, path unblocked

• Tail-to-tail

Y known, path blocked

Y

X Z

Y

X Z

Y unknown, path unblocked

• Head-to-head

Y known, path UNBLOCKED

X Z

Y

X Z

Y

Y unknown, path BLOCKED
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Markov blanket of a node

• Suppose we want the smallest set of nodes U such that X is independent
of all other nodes in the network given U . What should U be?

• Clearly, at least X’s parents and children should be in U

• But this is not enough if there are v-structures; U will also have to
include X’s “spouses” - i.e. the other parents of X’s children

• The set U consisting of X’s parents, children and other parents of its
children is called the Markov blanket of X.

Markov blanket

• Clearly, at least X ’s parents and children should be in U

• But this is not enough if there are v-structures; U will also have
to include X ’s “spouses” - i.e. the other parents of X ’s children

The set U consisting of X ’s parents, children and other parents of
its children is called the Markov blanket of X .

X
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Moral graphs

• Given a DAG G, we define the moral graph of G to be an undirected
graph U over the same set of vertices, such that the edge (X,Y ) is in
U if X is in Y ’s Markov blanket

• Many independencies are lost in the moral graph

• Moral graphs will prove to be useful when we talk about inference.

Moral graphs

Given a DAG G, we define the moral graph of G to be an
undirected graph U over the same set of vertices, such that the
edge (X, Y ) is in U if X is in Y ’s Markov blanket

• If G is an I-map of p, then U will also be an I-map of p
• But many independencies are lost when going to a moral graph
• Moral graphs will prove to be useful when we talk about
inference.

January 11, 2008 9 COMP-526 Lecture 4
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Inference in Bayes nets

• Exact inference

– Variable elimination
– Belief propagation

• Approximate inference

– Loopy belief propagation
– Rejection sampling
– Likelihood weighting (a for of importance sampling)
– Gibbs sampling
– Variational methods
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Applying belief propagation to Bayes nets

1. Construct an undirected model corresponding to the Bayes net, by
“moralizing” the graph

2. Potential functions can be constructed based on the original probabilities

3. Use belief propagation (on the junction tree, or the loopy version) on the
undirected graph

4. Alternatively, use the information propagation rules to transmit messages
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Belief propagation on treesBelief propagation on trees
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We can parameterize the corresponding undirected model by:

Ψ(root) = p(root) and Ψ(xj, xi) = p(xj|xi)

for any nodes such that Xi is the parent of Xj

COMP-652, Lecture 19 - November 20, 2012 34

We can parameterize the corresponding undirected model by:

Ψ(root) = p(root) and Ψ(xj, xi)

for any nodes such that Xi is the parent of Xj
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Introducing evidence

Order: B,W,C,K,I,S

S

C

WB

IK

P(S|B=0)=?

• If we want to compute p(Y |E), we introduce the evidence potential
δ(xi, x̂i), for all evidence variables Xi ∈ E
• The potentials now become:

ψE(xi) =

{
ψ(xi)δ(xi, x̂i) if Xi ∈ E
ψ(xi), otherwise

• Traverse the tree starting at the leaves, propagating evidence
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What are the messages?

B

(C)mBC

(K)mCK

(S)mKS
(S)mIS

(C)mWC
C

K

S
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W

The message passed by C to K will be:

mCK(K) =
∑
c

(
ψE(c)ψ(c, k)mBC(c)mWC(c)

)
where mBC(C) and mWC(C) are the messages from B and C.
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Belief propagation updates

• Node Xj computes the following message for node Xi

mji(xi) =
∑
xj

ψE(xj)ψ(xi, xj)
∏

k∈neighbors(xj)−{xi}

mkj(xj)


Note that it aggregates the evidence of Xj itself, the evidence received
from all neighbors except Xi, and “modulates” it by the potential
between Xj and Xi.

• The desired query probability is computed as:

p(y|x̂E) ∝ ψE(y)
∏

k∈neighbors(Y )

mky(y)
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Computing all probabilities simultaneously

B
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W

• Because messages can be re-used, we can compute all conditional
probabilities by computing all messages!

• Note that the number of messages is not too big

• We can use our previous equations to compute messages, but we need a
protocol for when to compute them
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Message-passing protocol

• A node can send a message to a neighbor after it has received the
messages from all its other neighbors.

• Synchronous parallel implementation: any node with d neighbors sends
a message after receiving messages on d− 1 edges

• Solid edges are current messages, dashed are already sent

• This is called the sum-product algorithm for trees

B

C

K

S

I

W B

C

K

S

I

W B

C

K

S

I

W B

C

K

S

I

W

COMP-652 and ECSE 608, Lecture 8 - January 31, 2017 21



Using the tree algorithm - take 1

• Turn the undirected moral graph into a tree!

• Then just use the tree algorithm

• The catch: the graph needs to be triangulated

D

A B

C
• Finding an optimal triangulation in general is NP-hard

• Usually not the preferred option...
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Using the tree algorithm - take 2

• Simply keep computing and propagating messages!

• At node Xj, re-compute the message as:

mnew
ij (xj) =

∑
xi

ψ(Xi, Xj)ψ(Xi)
∏

k∈Neighbors(i),k 6=j

mold
ki (xi)

• Note that the last two factors are only a function of Xi

• This is called loopy belief propagation
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A different idea

• Generate one sample, with the given evidence variables instantiated
correctly; the sample need not be from the same distribution

• Then change the values of the variable in the sample in such a way that
it ends up being from the correct distribution

• Repeat until a desired number of samples
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Gibbs sampling for Bayes nets

1. Initialization

• Set evidence variables E, to the observed values e
• Set all other variables to random values (e.g. by forward sampling)

This gives us a sample x1, . . . , xn.

2. Repeat (as much as wanted)

• Pick a non-evidence variable Xi uniformly randomly)
• Sample x′i from P (Xi|x1, . . . , xi−1, xi+1, . . . , xn).
• Keep all other values: x′j = xj,∀j 6= i
• The new sample is x′1, . . . , x

′
n

3. Alternatively, you can march through the variables in some predefined
order
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Why Gibbs works in Bayes nets

• The key step is sampling according to P (Xi|x1, . . . , xi−1, xi+1, . . . , xn).
How do we compute this?

• In Bayes nets, we know that a variable is conditionally independent of all
others given its Markov blanket (parents, children, spouses)

P (Xi|x1, . . . , xi−1, xi+1, . . . , xn) = P (Xi|MarkovBlanket(Xi))

• So we need to sample from P (Xi|MarkovBlanket(Xi))

• Let Yj, j = 1, . . . , k be the children of Xi. It is easy to show that:

P (Xi = xi|MarkovBlanket(Xi)) ∝ P (Xi = xi|Parents(Xi)) ·

·
k∏
j=1

P (Yj = yj|Parents(Yj))
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Example

1. Generate a first sample: C = 0, R = 0, S = 0,W = 1.

2. Pick R, sample it from P (R|C = 0,W = 1, S = 0). Suppose we get
R = 1.

3. Our new sample is C = 0, R = 1, S = 0,W = 1

4. ....
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Analyzing Gibbs sampling

• Consider the variables X1, . . . , Xn. Each possible assignment of values
to these variables is a state of the world, 〈x1, . . . , xn〉.
• In Gibbs sampling, we start from a given state s = 〈x1, . . . , xn〉. Based

on this, we generate a new state, s′ = 〈x′1, . . . , x′n〉.
• s′ depends only on s!

• There is a well-defined probability of going from s to s′.

• Gibbs sampling constructs a Markov chain over the Bayes net
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Recall: Markov chains

• Suppose you have a system which evolves through time:
s0 → s1 → · · · → st → st+1 → . . .

• A Markov chain is a special case of such a system, defined by:

– A set of states S
– A starting distribution over the set of states p0(s) = P (s0 = s). If the

state space is discrete, this can be represented as a column vector p0

– A stationary transition probability, specifying ∀s, s′ ∈ S, pss′ =
P (st+1 = s′|st = s). The Markov property here means that
P (st+1|st) = P (st+1|s0, . . . st).

• For convenience, we put these probabilities in a |S|×|S| transition matrix
T.
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How does the chain evolve over time?

• Where will the chain be on the first time step, t = 1?

P (st+1 = s′) =
∑
s

P (s0 = s)P (s1 = s′|s0 = s)

by using the graphical model for the first time step: s0 → s1.

• We can put this in matrix form as follows:

p′1 = p′0T −→ p1 = T′p0

where T′ denotes the transpose of T

• Similarly, at t = 2, we have:

p2 = T′p1 = (T′)2p0
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Steady-state (stationary) distribution

• By induction, the probability distribution over possible states at time
step t can be computed as:

pt = T′pt−1 = (T′)tp0

• If limt→∞pt exists, it is called the stationary or steady-state distribution
of the chain.

• If the limit exists, π = limt→∞pt, then we have:

π = T′π,
∑
s∈S

πs = 1

• Under what conditions does a chain have a stationary distribution?

• Does the equation π = T′π always have a unique solution?

COMP-652 and ECSE 608, Lecture 8 - January 31, 2017 31



Not all chains have a stationary distribution

• If the chain has a purely periodic cycle, the stationary distribution does
not exist

• E.g. the system is always in one state on odd time steps and the other
state on even time steps, so the probability vector pt oscillates between
2 values

• For the limit to exist, the chain must be aperiodic

• A standard trick for breaking periodicity is to add self-loops with small
probability
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Limit distribution may depend on the initial transition

• If the chain has multiple “components”, the limit distribution may exist,
but depend on a few initial steps

• Such a chain is called reducible

• To eliminate this, every state must be able to reach every other state:

∀s, s′,∃k > 0 s.t. P (st+k = s′|st = s) > 0
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Ergodicity

• An ergodic Markov chain is one in which any state is reachable from any
other state, and there are no strictly periodic cycles (in other words, the
chain is irreducible and aperiodic)

• In such a chain, there is a unique stationary distribution π, which can be
obtained as:

π = lim
t→∞

pt

This is also called the equilibrium distribution

• The chain reaches the equilibrium distribution regardless of p0

• The distribution can be computed by solving:

π = T′π,
∑
s

πs = 1
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Balance in Markov chains

• Consider the steady-state equation for a system of n states:

[π1π2 . . . πn] = [π1π2 . . . πn]


1−∑i6=1 p1i p12 . . . p1n

p21 1−∑i6=2 p2i. . . p2n
. . . . . . . . . . . .
pn1 pn2 . . . 1−∑i6=n pni


• By doing the multiplication, for any state s, we get:

πs = πs

1−
∑
i6=s

psi

+
∑
i6=s

πipis =⇒ πs
∑
i6=s

psi =
∑
i6=s

πipis

This can be viewed as a “flow” property: the flow out of s has to be
equal to the flow coming into s from all other states
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Detailed balance

• Suppose we were designing a Markov chain, and we wanted to ensure a
stationary distribution

• This means that the flow equilibrium at every state must be achieved.

• One way to ensure this is to make the flow equal between any pair of
states:

πspss′ = πs′ps′s,∀s, s′

This gives us a sufficient condition for stationarity, called detailed balance

• A Markov chain with this property is called reversible
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Gibbs sampling as MCMC

• We have a set of random variables X = {x1 . . . xn}, with evidence
variables E = e. We want to sample from P (X − E|E = e).

• Let Xi be the variable to be sampled, currently set to xi, and x̄i be the
values for all other variables in X − E − {Xi}
• The transition probability for the chain is: pss′ = P (x′i|x̄i, e)
• Under mild assumptions on the original graphical model, the chain is

ergodic

• We want to show that P (X − E|e) is the stationary distribution
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Gibbs satisfies detailed balance

• We show that if we plug in P (X − E|e) as the stationary distribution,
detailed balance is satisfied

πspss′ = P (X − E|e)P (x′i|x̄i, e)
= P (xi, x̄i|e)P (x′i|x̄i, e)
= P (xi|x̄i, e)P (x̄i|e)P (x′i|x̄i, e) (by chain rule)

= P (xi|x̄i, e)P (x′i, x̄i|e) (backwards chain rule)

= ps′sπs′

• If the chain is ergodic, there is a unique stationary distribution, and since
P (X − E|e) satisfies the balance equation, it must be the stationary
distribution.
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Example: Gibbs for sampling from a joint distribution
(MacKay)

• Start with an initial point

• Draw alternatively from P (X2|X1) and P (X1|X2)

• Line shows the evolution of the samples
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Mixing time

• Gibbs sampling can be viewed as a method for sampling from the
stationary distribution of a Markov chain

• This is done by sampling successively from a sequence pt of distributions

• Hence, it is useful to know for what value of t we have pt ≈ π
• This is called the mixing time of the chain

• If the mixing time is “small” (e.g. compared to the number of states in
the chain) we say the chain is rapidly mixing

• Unfortunately, the mixing time is hard to estimate (it depends on the
gap between the first two eigenvalues of the transition matrix)

• In practice, it is best to wait as long as possible to generate a sample
(this is called the burn-in time)
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Markov Chain Monte Carlo (MCMC) methods

• Suppose you want to generate samples from some distribution, but it is
hard to get samples directly

E.g., We want to sample uniformly the space of graphs with certain
properties

• We set up a Markov chain such that its stationary distribution is the
desired distribution

• Note that the ‘states” of this chain can be fairly complicated!

• Start at some state, wait for some number of transitions, then take
samples

• For this to work we need to ensure that:

– the chain has a unique stationary distribution
– the stationary distribution is equal to the desired distribution
– we reach the stationary distribution quickly
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Sampling the equilibrium distribution

• We can sample π just by running the chain a long time:

– Set s0 = i for some arbitrary i
– For t = 1, . . . ,M , if st = s, sample a value s′ for st+1 based on pss′
– Return sM .

If M is large enough, this will be a sample from π

• In practice, we would like to have a rapidly mixing chain, i.e. one that
reaches the equilibrium quickly
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Example: Random graphs

• Suppose you want to sample uniformly from the space of graphs with
v vertices and certain properties (e.g. certain in-degree and out-degree
bounds, cycle properties...)

• You set up a chain whose states are graphs with v vertices

• Transitions consist of adding or removing an arc (reversal too, if the
graphs are directed), with a certain probability

• We start with a graph satisfying the desired property.

• The probabilities are devised based on the distribution that we want to
reach in the limit.
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Implementation issues

• The initial samples are influenced by the starting distribution, so they
need to be thrown away. This is called the burn-in stage

• Because burn-in can take a while, we would like to draw several samples
from the same chain

• However, if we take samples t, t+1, t+2..., they will be highly correlated

• Usually we wait for burn-in, then take every nth sample, for some n
sufficiently large. This will ensure that the samples are (for all practical
purposes) uncorrelated
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Learning in Bayesian networks

Given data, in the form of instances, e.g.:

Earthquake Burglary Alarm Call Radio
No No No No No
No Yes Yes Yes No
... ... ... ... ...

Create a complete graphical model (graph structure + CPDs)
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Two learning problems

1. Known vs. unknown structure of the network

I.e. do we know the arcs or do we have to find them too?

2. Complete vs. incomplete data

In real data sets, values for certain variables may be missing, and we
need to “fill in”

Today we focus on the case of known network structure with complete
data. This problem is called parameter estimation
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Example: Alarm network

C

E B

R A

• Instances are of the form 〈rj, ej, bj, aj, cj〉, j = 1, . . .m

• What are the parameters we are trying to estimate?
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L(θ|D) =

m∏
j=1

p(rj, ej, bj, cj, aj|θ) (from i.i.d)

=

m∏
j=1

p(ej)p(rj|ej)p(bj)p(aj|ej, bj)p(cj|ej) (factorization)

= (

m∏
j=1

p(ej))(

m∏
j=1

p(rj|ej))(
m∏
j=1

p(bj))(

m∏
j=1

p(aj|ej, bj))(
m∏
j=1

p(cj|ej))

=

n∏
i=1

L(θi|D)

where θi are the parameters associated with node i.
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MLE for Bayes nets

Generalizing, for any Bayes net with variables X1, . . . Xn, we have:

L(θ|D) =

m∏
j=1

p(x1(j), . . . xn(j)|θ) (from i.i.d)

=

m∏
j=1

n∏
i=1

p(xi(j)|xπi(j)), θ) (factorization)

=

n∏
i=1

m∏
j=1

p(xi(j)|xπi(j))

=

n∏
i=1

L(θi|D)

The likelihood function decomposes according to the structure of the
network, which creates independent estimation problems.
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Missing data

• Use EM!

• We start with an initial set of parameters

• Use inference to fill in the missing values of all variables

• Re-compute the parameters (which now can be done locally at each
node)

• These steps are iterated until parameters converge

• Theoretical properties are identical to general EM
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