Lecture 5: More on Kernels. SVM regression and
classification

e How to tell if a function is a kernel
e SVM regression
e SVM classification
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The “kernel trick”

e Recall: kernel functions are ways of expressing dot-products in some
feature space:

K(x,2z) = ¢(x) - ¢(z)
e |In many cases, K can be computed in time that depends on the size of
the inputs x not the size of the feature space ¢(x)

o |f we work with a “dual” representation of the learning algorithm, we do
not actually have to compute the feature mapping ¢. We just have to
compute the similarity K.
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Polynomial kernels

d

e More generally, K(x,z) = (x-z)% is a kernel, for any positive integer d:

d

K(x,z) = i:xzzz
i=1

o If we expanded the sum above in the obvious way, we get n? terms (i.e.
feature expansion)

e Terms are monomials (products of x;) with total power equal to d.

e (Curse of dimensionality: it is very expensive both to optimize and to
predict in primal form

e However, evaluating the dot-product of any two feature vectors can be
done using K in O(n)!
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Some other (fairly generic) kernel functions
e K(x,z) = (1 +x-2)% — feature expansion has all monomial terms of
< d total power.
e Radial basis/Gaussian kernel:
K (x,z) = exp(—|x — z||*/20%)
The kernel has an infinite-dimensional feature expansion, but dot-

products can still be computed in O(n)!

e Sigmoidal kernel:

K(x,z) = tanh(c1x - z + ¢2)
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Recall: Dual-view regression

e By re-writing the parameter vector as a linear combination of instances

and solving, we get:
a= K+, 'y

e The feature mapping is not needed either to learn or to make predictions!

e This approach is useful if the feature space is very large
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Making predictions in the dual view

e For a new input x, the prediction is:
h(x) =wlo(x) =a’ ®o(x) = k(x)" (K + \I,,) 'y

where k(x) is an m-dimensional vector, with the ith element equal to
K(x,x;)
e That is, the 7th element has the similarity of the input to the 7th instance
e The features are not needed for this step either!

e This is a non-parametric representation - its size scales with the number
of instances.
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Regularization in the dual view

e We want to penalize the function we are trying to estimate (to keep it
simple)

e Assume this is part of a reproducing kernel Hilbert space (Doina will post
extra notes for those interested in this)

e \We want to minimize:

n

T(h) = £ 3w~ b)) + Sl

1=1

e |f we put a Gaussian prior on h, and solve, we obtain Gaussian process
regression

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016 7



Logistic regression

e The output of a logistic regression predictor is:

1

frw (x) = 1 + eW! ¢(x)+wo

e Again, we can define the weights in terms of support vectors: w =
D imy Qid(X;)

e [he prediction can now be computed as:

1
h(x) = |+ oy ks (o 0w

e «; are the new parameters (one per instance) and can be derived using
gradient descent
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Kernels

e A lot of current research has to do with defining new kernels functions,
suitable to particular tasks / kinds of input objects

e Many kernels are available:

— Information diffusion kernels (Lafferty and Lebanon, 2002)

— Diffusion kernels on graphs (Kondor and Jebara 2003)

— String kernels for text classification (Lodhi et al, 2002)

— String kernels for protein classification (e.g., Leslie et al, 2002)

. and others!
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Example: String kernels

e Very important for DNA matching, text classification, ...

e Example: in DNA matching, we use a sliding window of length k£ over
the two strings that we want to compare

e The window is of a given size, and inside we can do various things:

— Count exact matches
— Weigh mismatches based on how bad they are
— Count certain markers, e.g. AGT

e The kernel is the sum of these similarities over the two sequences

e How do we prove this is a kernel?
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Establishing “kernelhood”

e Suppose someone hands you a function K. How do you know that it is
a kernel?

e More precisely, given a function K : R" xR™ — R, under what conditions
can K(x,z) be written as a dot product ¢(x) - ¢(z) for some feature
mapping ¢?

e We want a general recipe, which does not require explicitly defining ¢
every time
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Kernel matrix

e Suppose we have an arbitrary set of input vectors x1,Xo, ... X,

e The kernel matrix (or Gram matrix) K corresponding to kernel function
K is an m x m matrix such that K;; = K(x;,x;) (notation is overloaded

on purpose).
e \What properties does the kernel matrix K have?
e Claims:

1. K Is symmetric
2. K is positive semidefinite

e Note that these claims are consistent with the intuition that K is a

“similarity” measure (and will be true regardless of the data)
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Proving the first claim

If K is a valid kernel, then the kernel matrix is symmetric

Kij = ¢(x;) - 9(x5) = ¢(x5) - o(x5) = Ky
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Proving the second claim

If K is a valid kernel, then the kernel matrix is positive semidefinite

Proof: Consider an arbitrary vector z

7z Kz = Z Z 2l 25 = Z Z < (¢(Xi) ' ¢(Xj)) <]

_ ZZ’Z" <Z ¢k(Xi)¢k(Xj)> Zj
— S:S:;:Ziﬁbk(xi)?bk(xj)’zj

= S:( .erﬂbk(xz‘)) >0

k
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Mercer’'s theorem

e We have shown that if K is a kernel function, then for any data set,
the corresponding kernel matrix K defined such that K;; = K (x;,x;) is
symmetric and positive semidefinite

e Mercer's theorem states that the reverse is also true:

Given a function K : R" x R" — R, K is a kernel if and only if, for
any data set, the corresponding kernel matrix is symmetric and positive
semidefinite

e The reverse direction of the proof is much harder (see e.g. Vapnik's
book for details)

e This result gives us a way to check if a given function is a kernel, by
checking these two properties of its kernel matrix.

e Kernels can also be obtained by combining other kernels, or by learning
from data

e Kernel learning may suffer from overfitting (kernel matrix close to
diagonal)
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More on RKHS

e Mercer's theorem tells us that a function K : X x X — R is a kernel
(i.e. it corresponds to the inner product in some feature space) if and
only if it is positive semi-definite.

e The feature space is the reproducing kernel Hilbert space (RKHS)

H = ZO&]‘K(Z]',') : ZjEX, OéjER
J

with inner product (K (z,-), K(2',- )y = K(z,2').
e The term reproducing comes from the reproducing property of the kernel
function:
VieH, veX + flx)=(f(), K, ))n
e Recall that the solution of the regularized least square in the feature space

associated to a kernel function K has the form h(x) = > .~ ; o, K(x;,x).
This is a particular case of the representer theorem...
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Representer Theorem

Theorem 1. Let K : X x X — R be a positive definite kernel and let 'H
be the corresponding RKHS.

Then for any training sample S = {(x;,y;)}iny C X X R, any loss
function £ : (X x R x R)™ — R and any real-valued non-decreasing
function g, the solution of the optimization problem

argmin £ ((z1, y1, f(21)), - 5 (Fm; Ym, [(2m))) + g([[ f]12)
feH

admits a representation of the form
m

) =) aK(x,-).
i=1

[Schlkopf, Herbrich and Smola. A generalized representer Theorem. COLT 2001.]
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Support Vector Regression

e In regression problems, so far we have been trying to minimize mean-

squared error:

Z(yi — (W - x; 4 wp))”

1

e In SVM regression, we will be interested instead in minimizing absolute

Eerror:

D1y — (W xi + wo)

e This is more robust to outliers than the squared loss

e But we cannot require that all points be approximated correctly

(overfitting!)
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Loss function for support vector regression

In order to allow for misclassifications in SVM regression (and have
robustness to noise), we use the e-insensitive loss:

m

J. = Z Je(xi), where

1=1

0 if lyi — (w-x3+wp)| <e
ly; — (W - x3+wp)| —e otherwise

I = {

cost is zero inside epsilon “tube”

f(@)+e
f(=)
f(z)—e

square
loss

Ve(r)

v
=

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016 19



Solving SVM regression

e We introduce slack variables, fj, ¢, to account for errors outside the
tolerance area

e \We need two kinds of variables to account for both positive and negative
errors
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The optimization problem

min - glwl®+C Y& + &)
w.r.t. w,wo,fj,fi_
sty — (Wex;+wg) <e+&f
yi — (W-x; +wp) > —€ — &
;& =0

e Like before, we can write the Lagrangian and solve the dual form of the

problem
e Kernels can be used as before to get non-linear functions
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Effect of ¢
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e As € increases, the function is allowed to move away from the data
points, the number of support vectors decreases and the fit gets worse

2Zisserman course notes
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Binary classification revisited

e Consider a linearly separable binary classification data set {x;, y;}/" ;.
e There is an infinite number of hyperplanes that separate the classes:

e Which plane is best?

e Relatedly, for a given plane, for which points should we be most confident
In the classification?

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016 23



The margin, and linear SVMs

e For a given separating hyperplane, the margin is two times the (Euclidean)
distance from the hyperplane to the nearest training example.

e |t is the width of the “strip” around the decision boundary containing no
training examples.

e A linear SVM is a perceptron for which we choose w, wg so that margin
IS maximized
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Distance to the decision boundary

e Suppose we have a decision boundary that separates the data.
A

e Let ~; be the distance from instance x; to the decision boundary.

e How can we write ~; in term of x;, y;, W, wq?
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Distance to the decision boundary (II)

e The vector w is normal to the decision boundary. Thus, ﬁ Is the unit
normal.

e The vector from the B to A is fyiﬁ.
e B, the point on the decision boundary nearest x;, is x; — %ﬁ.

e As B is on the decision boundary,

W
WX —Yig— ] two=0
( IIWH)

e Solving for ; yields, for a positive example:

W Wy
W= Xt

w| 1wl
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The margin

e The margin of the hyperplane is 2M, where M = min; y;

e The most direct statement of the problem of finding a maximum margin
separating hyperplane is thus

max min -y;
wW,wg 1

= maxminy; | —— - X; +
wowo g [|wl] hal

e This turns out to be inconvenient for optimization, however. . .

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016 27



Treating the ~; as constraints

e From the definition of margin, we have:
MSV@':yi(l'Xi‘Fﬂ) Vi
[wl| [w]

e This suggests:
maximize M

with respect to w,wy
subject to y; (IIWII Xi + Tw ”> > M for all ¢

e Problems:

— w appears nonlinearly in the constraints.
— This problem is underconstrained. If (w,wqy, M) is an optimal solution,
then so is (8w, Bwg, M) for any 5 > 0.
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Adding a constraint

e Let's try adding the constraint that |w||M = 1.

e This allows us to rewrite the objective function and constraints as:
min ||w]|
w.r.t. w,wg
s.t.  y(wW-x;+wp) > 1
e This is really nice because the constraints are linear.

e The objective function ||w|| is still a bit awkward.
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Final formulation

e Let's maximize ||w||? instead of ||w||.
(Taking the square is a monotone transformation, as ||w/|| is postive, so
this doesn’t change the optimal solution.)

e This gets us to:
min  ||w||?
w.r.t. w,wg
st.  yi(w-x; +wy) >1
e This we can solve! How?

— It is a quadratic programming (QP) problem—a standard type of
optimization problem for which many efficient packages are available.
— Better yet, it's a convex (positive semidefinite) QP
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Example

w = [49.6504 46.8962] w0 = -48.6936

We have a solution, but no support vectors vyet...
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Lagrange multipliers for inequality constraints (revisited)
e Suppose we have the following optimization problem, called primal:

mvin f(w)

such that g;(w) < 0,i=1...k

e We define the generalized Lagrangian:

k
L(w.) = f(w) + Y aigi(w), (1

where o, © = 1...k are the Lagrange multipliers.
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A different optimization problem

o Consider P(W) = maxy.q,>0 L(W, )

e Observe that the follow is true (see extra notes):

| f(w) if all constraints are satisfied
Plw) = { +o0o  otherwise

e Hence, instead of computing miny f(W) subject to the original
constraints, we can compute:

p" = min P(w) = min max L(w,q)
W W aia; >0
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Dual optimization problem

o Let d* = maxy.q,>0ming L(W, a) (max and min are reversed)
e We can show that d* < p*.

— Let p* = (wp aP)
— Let d* = L(w?, o
— Then d* = L(wd,a ) < L(wP, a?) < L(wP, aP) = p*.
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Dual optimization problem

e If f, g; are convex and the g; can all be satisfied simultaneously for some
w, then we have equality: d* = p* = L(w™*, a*)

e Moreover w*, a* solve the primal and dual if and only if they satisfy the
following conditions (called Karush-Kunh-Tucker):

aiiL(w*,oz*) = 0,72=1...n (2)
a;g(w*) = 0,i=1...k (3)
g(w*) < 0,i=1...k (4)

af > 0,1=1...k (5)
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Back to maximum margin perceptron

e We wanted to solve (rewritten slightly):
min  Z|wl?
w.r.t. w,wg
st. 1—y(w-x;+wy) <0
e The Lagrangian is:

L(va()aa) — _HWH2 + Zaz yz W - X; + wO))

e The primal problem is: miny ,,, maxy:q, >0 L(W, wo, o)
o We will solve the dual problem: max,.q. >0 miny ., L(W, wp, &)

e In this case, the optimal solutions coincide, because we have a quadratic
objective and linear constraints (both of which are convex).
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Solving the dual

e From KKT (2), the derivatives of L(w,wg, a) wrt w, wq should be 0
e The condition on the derivative wrt wq gives ) . o,y; =0

e T[he condition on the derivative wrt w gives:
W = Z QA YiXi
i

= Just like for the perceptron with zero initial weights, the optimal solution
for w is a linear combination of the x;, and likewise for wy.

e The output is .
hw,wo(x) = sign Z oY (X - X) + wo
i=1

= QOutput depends on weighted dot product of input vector with training
examples
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Solving the dual (1)

e By plugging these back into the expression for L, we get:

1
max Z i =5 Z Vil 0o (X - X5)
1 1,7

with constraints: a; > 0 and ) . a;y; = 0
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The support vectors

e Suppose we find optimal as (e.g., using a standard QP package)
e The «; will be > 0 only for the points for which 1 — y;(w - x; + wg) = 0

e These are the points lying on the edge of the margin, and they are called
support vectors, because they define the decision boundary

e The output of the classifier for query point x is computed as:

o (z (i %)+ w0>
1=1

Hence, the output is determined by computing the dot product of the
point with the support vectors!
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Example

Support vectors are in bold
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Non-linearly separable data
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e A linear boundary might be too simple to capture the class structure.

e One way of getting a nonlinear decision boundary in the input space is to
find a linear decision boundary in an expanded space (e.g., for polynomial
regression.)

e Thus, x; is replaced by ¢(x;), where ¢ is called a feature mapping
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Margin optimization in feature space

e Replacing x; with ¢(x;), the optimization problem to find w and wj
becomes:
min  ||w]|?
w.r.t. w,wg
st yi(w - o(x;) + wo) > 1
e Dual form:
max Yy — g 3y ViV d(xs) - o(x;)

w.r.t. «;
s.t. 0 <q;
m
Zi:l o;y; = 0
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Feature space solution

e The optimal weights, in the expanded feature space, are w =

Z?; iy iP(%;).

e Classification of an input x is given by:
hw,wo(x) — Sign Z azYz¢(Xz) ) ¢(X) + Wo
i=1

= Note that to solve the SVM optimization problem in dual form and to

make a prediction, we only ever need to compute dot-products of feature
vectors.
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Kernel functions
e Whenever a learning algorithm (such as SVMs) can be written in terms
of dot-products, it can be generalized to kernels.

e A kernel is any function K : R™ x R™ — R which corresponds to a dot
product for some feature mapping ¢:

K(x1,%2) = ¢(x1) - #(x2) for some ¢.

e Conversely, by choosing feature mapping ¢, we implicitly choose a kernel
function

e Recall that ¢(x1) - ¢(x2) = cos £(x1,x2) where £ denotes the angle
between the vectors, so a kernel function can be thought of as a notion
of similarity.
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The “kernel trick”

e |f we work with the dual, we do not actually have to ever compute the
feature mapping ¢. We just have to compute the similarity K.

e [hat is, we can solve the dual Ior the o;:
m m
max Y ;-0 — 50 o YiY o K (X, X;)

w.r.t. oy
s.t. 0 <o
™m
2121 a;y; =0

e The class of a new input x is computed as:

hW,’wo = sign ( Z i d(Xi)) - (%) + ’I,U()) = sign <Z oy K (%4, %) + wO)

1=1

e Often, K(-,-) can be evaluated in O(n) time—a big savings!
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Regularization with SVMs

e Kernels are a powerful tool for allowing non-linear, complex functions

e But now the number of parameters can be as high as the number of
instances!

e With a very specific, non-linear kernel, each data point may be in its own
partition

e With linear and logistic regression, we used regularization to avoid
overfitting

e \We need a method for allowing regularization with SVMs as well.
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Soft margin classifiers

e Recall that in the linearly separable case, we compute the solution to the
following optimization problem:
min [l w]?
w.r.t. w,wg
S.t. yZ(W - X; T ’wo) Z 1
e |f we want to allow misclassifications, we can relax the constraints to:

yi(W-x; +wg) >1—¢&;

o If & € (0,1), the data point is within the margin
o If & > 1, then the data point is misclassified
o We define the soft error as ) . ¢&;

e We will have to change the criterion to reflect the soft errors
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New problem formulation with soft errors

e Instead of:
min %HWHQ
w.r.t. w,wg
S.t. yz(W - X; T ’wo) Z 1
we want to solve:
min  3w[*+C 3, &
w.rt. w,wgp,&;
st yi(w-x;+wy) >1-¢&,§ >0
e Note that soft errors include points that are misclassified, as well as
points within the margin

e There is a linear penalty for both categories

e The choice of the constant C' controls overfitting
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A built-in overfitting knob

min  Lw]? + O, &
w.rt. w,wgp,&;
s.t. Y (w-x;+wy) >1—¢&;
& >0
o If C is 0, there is no penalty for soft errors, so the focus is on maximizing
the margin, even if this means more mistakes

o If C' is very large, the emphasis on the soft errors will cause decreasing
the margin, if this helps to classify more examples correctly.

e Internal cross-validation is a good way to choose C' appropriately
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Lagrangian for the new problem

e Like before, we can write a Lagrangian for the problem and then use the
dual formulation to find the optimal parameters:

L(va()aa)f?:u) — _||WH2+CZ£Z

e All the previously described machinery can be used to solve this problem

e Note that in addition to a; we have coefficients p;, which ensure that
the errors are positive, but do not participate in the decision boundary
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Soft margin optimization with kernels

e Replacing x; with ¢(x;), the optimization problem to find w and wj
becomes:
min |w|*+C>. ¢
w.r.t. w,wo,(
s.t.  yi(w-o(x;) +wo) > (1 =)
G >0

e Dual form and solution have similar forms to what we described last
time, but in terms of kernels
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Getting SVMs to work in practice

e [wo important choices:

— Kernel (and kernel parameters)
— Regularization parameter C

e The parameters may interact!

E.g. for Gaussian kernel, the larger the width of the kernel, the more
biased the classifier, so low C' is better

e Together, these control overfitting: always do an internal parameter
search, using a validation set!

e Overfitting symptoms:

— Low margin
— Large fraction of instances are support vectors
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Solving the quadratic optimization problem

e Many approaches exist

e Because we have constraints, gradient descent does not apply directly
(the optimum might be outside of the feasible region)

e Platt's algorithm is the fastest current approach, based on coordinate
ascent
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Coordinate ascent

e Suppose you want to find the maximum of some function F(aq,...a,)

e Coordinate ascent optimizes the function by repeatedly picking an «;
and optimizing it, while all other parameters are fixed

e There are different ways of looping through the parameters:

— Round-robin
— Repeatedly pick a parameter at random
— Choose next the variable expected to make the largest improvement
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Our optimization problem (dual form)
1
max > i 5 > viysaiog(d(xi) - 6(x;))
i i.j
with constraints: 0 < o; < C and) . oy, =0

e Suppose we want to optimize for ar; while as, ... «,, are fixed

e \We cannot do it because oy will be completely determined by the last
constraint: a3 = —y1 >, QYi

e Instead, we have to optimize pairs of parameters a;, o; together
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SMO

e Suppose that we want to optimize oy and as together, while all other

parameters are fixed.
o We know that y1aq + yoaa = — D" y;a; = &, where & is a constant
e So a; = y1 (& — y2c2) (because ¥ is either +1 or —1 so y% = 1)

e This defines a line, and any pair o, as which is a solution has to be on

the line
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SMO (11)

e We also know that 0 < a7 < C and 0 < ay < C, so the solution has to
be on the line segment inside the rectangle below

A
C
5 vy ay @t
o
L >
oy C
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SMO(Il)

e By plugging a; back in the optimization criterion, we obtain a quadratic

function of as, whose optimum we can find exactly

e |f the optimum is inside the rectangle, we take it.

e |f not, we pick the closest intersection point of the line and the rectangle

e This procedure is very fast because all these are simple computations.

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016

59



Interpretability

e SVMs are not very intuitive, but typically are more interpretable than
neural nets, if you look at the machine and the misclassifications

e E.g. Ovarian cancer data (Haussler) - 31 tissue samples of 3 classes,
misclassified examples wrongly labelled

e But no biological plausibility!

e Hard to interpret if the percentage of instances that are recruited as
support vectors is high
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Complexity

e Quadratic programming is expensive in the number of training examples

e Platt's SMO algorithm is quite fast though, and other fancy optimization
approaches are available

e Best packages can handle 50, 000+ instances, but not more than 100, 000

e On the other hand, number of attributes can be very high (strength
compared to neural nets)

e Evaluating a SVM is slow if there are a lot of support vectors.

e Dictionary methods attempt to select a subset of the data on which to
train.
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Passive supervised learning

e The environment provides labelled data in the form of pairs (x,y)

e We can process the examples either as a batch or one at a time, with
the goal of producing a predictor of y as a function of x

e We assume that there is an underlying distribution P generating the
examples

e Each example is drawn i.i.d. from P
e What if instead we are allowed to ask for particular examples?

e Intuitively, if we are allowed to ask questions, and if we are smart about
what we want to know, fewer examples may be necessary
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Semi-Supervised and Active Learning
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Unlabeled points Supervised learning Semisupervised and

active learning

e Suppose you had access to a lot of unlabeled data
E.g. all the documents on the web
E.g. all the pictures on Instagram

e You can also get some labelled data, but not much

e How can we take advantage of the unlabeled data to improve supervised
learning performance?
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