
Lecture 5: More on Kernels. SVM regression and
classification

• How to tell if a function is a kernel

• SVM regression

• SVM classification
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The “kernel trick”

• Recall: kernel functions are ways of expressing dot-products in some
feature space:

K(x, z) = φ(x) · φ(z)
• In many cases, K can be computed in time that depends on the size of

the inputs x not the size of the feature space φ(x)

• If we work with a “dual” representation of the learning algorithm, we do
not actually have to compute the feature mapping φ. We just have to
compute the similarity K.
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Polynomial kernels

• More generally, K(x, z) = (x · z)d is a kernel, for any positive integer d:

K(x, z) =

(
n∑

i=1

xizi

)d

• If we expanded the sum above in the obvious way, we get nd terms (i.e.
feature expansion)

• Terms are monomials (products of xi) with total power equal to d.

• Curse of dimensionality: it is very expensive both to optimize and to
predict in primal form

• However, evaluating the dot-product of any two feature vectors can be
done using K in O(n)!
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Some other (fairly generic) kernel functions

• K(x, z) = (1 + x · z)d – feature expansion has all monomial terms of
≤ d total power.

• Radial basis/Gaussian kernel:

K(x, z) = exp(−‖x− z‖2/2σ2)

The kernel has an infinite-dimensional feature expansion, but dot-
products can still be computed in O(n)!

• Sigmoidal kernel:

K(x, z) = tanh(c1x · z + c2)
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Recall: Dual-view regression

• By re-writing the parameter vector as a linear combination of instances
and solving, we get:

a = (K + λIm)
−1y

• The feature mapping is not needed either to learn or to make predictions!

• This approach is useful if the feature space is very large
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Making predictions in the dual view

• For a new input x, the prediction is:

h(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIm)
−1y

where k(x) is an m-dimensional vector, with the ith element equal to
K(x,xi)

• That is, the ith element has the similarity of the input to the ith instance

• The features are not needed for this step either!

• This is a non-parametric representation - its size scales with the number
of instances.
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Regularization in the dual view

• We want to penalize the function we are trying to estimate (to keep it
simple)

• Assume this is part of a reproducing kernel Hilbert space (Doina will post
extra notes for those interested in this)

• We want to minimize:

J(h) =
1

2

n∑

i=1

(yi − h(xi))2 +
λ

2
||h||2H

• If we put a Gaussian prior on h, and solve, we obtain Gaussian process
regression
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Logistic regression

• The output of a logistic regression predictor is:

hw(x) =
1

1 + ewTφ(x)+w0

• Again, we can define the weights in terms of support vectors: w =∑m
i=1αiφ(xi)

• The prediction can now be computed as:

h(x) =
1

1 + e
∑m

ı=1 αiK(xi,x)+w0

• αi are the new parameters (one per instance) and can be derived using
gradient descent

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016 8



Kernels

• A lot of current research has to do with defining new kernels functions,
suitable to particular tasks / kinds of input objects

• Many kernels are available:

– Information diffusion kernels (Lafferty and Lebanon, 2002)
– Diffusion kernels on graphs (Kondor and Jebara 2003)
– String kernels for text classification (Lodhi et al, 2002)
– String kernels for protein classification (e.g., Leslie et al, 2002)

... and others!
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Example: String kernels

• Very important for DNA matching, text classification, ...

• Example: in DNA matching, we use a sliding window of length k over
the two strings that we want to compare

• The window is of a given size, and inside we can do various things:

– Count exact matches
– Weigh mismatches based on how bad they are
– Count certain markers, e.g. AGT

• The kernel is the sum of these similarities over the two sequences

• How do we prove this is a kernel?
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Establishing “kernelhood”

• Suppose someone hands you a function K. How do you know that it is
a kernel?

• More precisely, given a function K : Rn×Rn → R, under what conditions
can K(x, z) be written as a dot product φ(x) · φ(z) for some feature
mapping φ?

• We want a general recipe, which does not require explicitly defining φ
every time
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Kernel matrix

• Suppose we have an arbitrary set of input vectors x1,x2, . . .xm

• The kernel matrix (or Gram matrix) K corresponding to kernel function
K is an m×m matrix such that Kij = K(xi,xj) (notation is overloaded
on purpose).

• What properties does the kernel matrix K have?

• Claims:

1. K is symmetric
2. K is positive semidefinite

• Note that these claims are consistent with the intuition that K is a
“similarity” measure (and will be true regardless of the data)
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Proving the first claim

If K is a valid kernel, then the kernel matrix is symmetric

Kij = φ(xi) · φ(xj) = φ(xj) · φ(xi) = Kji
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Proving the second claim

If K is a valid kernel, then the kernel matrix is positive semidefinite

Proof: Consider an arbitrary vector z

zTKz =
∑

i

∑

j

ziKijzj =
∑

i

∑

j

zi (φ(xi) · φ(xj)) zj

=
∑

i

∑

j

zi

(∑

k

φk(xi)φk(xj)

)
zj

=
∑

k

∑

i

∑

j

ziφk(xi)φk(xj)zj

=
∑

k

(∑

i

ziφk(xi)

)2

≥ 0
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Mercer’s theorem

• We have shown that if K is a kernel function, then for any data set,
the corresponding kernel matrix K defined such that Kij = K(xi,xj) is
symmetric and positive semidefinite
• Mercer’s theorem states that the reverse is also true:

Given a function K : Rn × Rn → R, K is a kernel if and only if, for
any data set, the corresponding kernel matrix is symmetric and positive
semidefinite
• The reverse direction of the proof is much harder (see e.g. Vapnik’s

book for details)
• This result gives us a way to check if a given function is a kernel, by

checking these two properties of its kernel matrix.
• Kernels can also be obtained by combining other kernels, or by learning

from data
• Kernel learning may suffer from overfitting (kernel matrix close to

diagonal)
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More on RKHS

• Mercer’s theorem tells us that a function K : X × X → R is a kernel
(i.e. it corresponds to the inner product in some feature space) if and
only if it is positive semi-definite.
• The feature space is the reproducing kernel Hilbert space (RKHS)

H =




∑

j

αjK(zj, ·) : zj ∈ X , αj ∈ R





with inner product 〈K(z, ·),K(z′, ·)〉H = K(z, z′).
• The term reproducing comes from the reproducing property of the kernel

function:
∀f ∈ H, x ∈ X : f(x) = 〈f(·),K(x, ·)〉H

• Recall that the solution of the regularized least square in the feature space
associated to a kernel function K has the form h(x) =

∑m
i=1αiK(xi,x).

This is a particular case of the representer theorem...
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Representer Theorem

Theorem 1. Let K : X × X → R be a positive definite kernel and let H
be the corresponding RKHS.

Then for any training sample S = {(xi, yi)}mi=1 ⊂ X × R, any loss
function ` : (X × R × R)m → R and any real-valued non-decreasing
function g, the solution of the optimization problem

argmin
f∈H

` ((x1, y1, f(x1)), · · · , (xm, ym, f(xm))) + g(‖f‖H)

admits a representation of the form

f∗(·) =
m∑

i=1

αiK(xi, ·).

[Schlkopf, Herbrich and Smola. A generalized representer Theorem. COLT 2001.]
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Support Vector Regression

• In regression problems, so far we have been trying to minimize mean-
squared error: ∑

i

(yi − (w · xi + w0))
2

• In SVM regression, we will be interested instead in minimizing absolute
error: ∑

i

|yi − (w · xi + w0)|

• This is more robust to outliers than the squared loss

• But we cannot require that all points be approximated correctly
(overfitting!)
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Loss function for support vector regression

In order to allow for misclassifications in SVM regression (and have
robustness to noise), we use the ε-insensitive loss:

Jε =

m∑

i=1

Jε(xi), where

Jε(xi) =

{
0 if |yi − (w · xi + w0)| ≤ ε
|yi − (w · xi + w0)| − ε otherwise

!
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• Again, this is a quadratic programming problem

• It can be dualized

• Some of the data points will become support vectors

• It can be kernelized
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SVMs for Regression
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• Again, this is a quadratic programming problem

• It can be dualized

• Some of the data points will become support vectors

• It can be kernelized
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Solving SVM regression

• We introduce slack variables, ξ+
i , ξ−i to account for errors outside the

tolerance area

• We need two kinds of variables to account for both positive and negative
errors
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The optimization problem

min 1
2‖w‖2 + C

∑
i(ξ

+
i + ξ−i )

w.r.t. w, w0, ξ
+
i , ξ

−
i

s.t. yi − (w · xi + w0) ≤ ε+ ξ+
i

yi − (w · xi + w0) ≥ −ε− ξ−i
ξ+
i , ξ

−
i ≥ 0

• Like before, we can write the Lagrangian and solve the dual form of the
problem

• Kernels can be used as before to get non-linear functions
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Effect of ε
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Ideal fit

Example: SV regression with Gaussian basis functions

• The red curve is the true function 
(which is not a polynomial)

• Regression function – Gaussians 
centred on data points

• Parameters are: C, epsilon, sigma
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Sample points

Validation set fit

Support vectors

epsilon = 0.01

• Validation set fit is a search 
over both C and sigma
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Example: SV regression with Gaussian basis functions

• The red curve is the true function 
(which is not a polynomial)

• Regression function – Gaussians 
centred on data points

• Parameters are: C, epsilon, sigma
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As epsilon increases:

• fit becomes looser

• less data points are support vectors

Loss functions for regression
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• As ε increases, the function is allowed to move away from the data
points, the number of support vectors decreases and the fit gets worse

2Zisserman course notes
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Binary classification revisited

• Consider a linearly separable binary classification data set {xi, yi}mi=1.

• There is an infinite number of hyperplanes that separate the classes:

+
+

+

+

+

-
-

-

-

-

• Which plane is best?

• Relatedly, for a given plane, for which points should we be most confident
in the classification?
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The margin, and linear SVMs

• For a given separating hyperplane, the margin is two times the (Euclidean)
distance from the hyperplane to the nearest training example.

+
+

+

+

+

-
-

-

-

-

+
+

+

+

+

-

-

-

-

-

• It is the width of the “strip” around the decision boundary containing no
training examples.

• A linear SVM is a perceptron for which we choose w, w0 so that margin
is maximized
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Distance to the decision boundary

• Suppose we have a decision boundary that separates the data.

wA

�

B

(i)

• Let γi be the distance from instance xi to the decision boundary.

• How can we write γi in term of xi, yi,w, w0?
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Distance to the decision boundary (II)

• The vector w is normal to the decision boundary. Thus, w
||w|| is the unit

normal.

• The vector from the B to A is γi
w
||w||.

• B, the point on the decision boundary nearest xi, is xi − γi w
||w||.

• As B is on the decision boundary,

w ·
(

xi − γi
w

||w||

)
+ w0 = 0

• Solving for γi yields, for a positive example:

γi =
w

||w|| · xi +
w0

||w||

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016 26



The margin

• The margin of the hyperplane is 2M , where M = mini γi

• The most direct statement of the problem of finding a maximum margin
separating hyperplane is thus

max
w,w0

min
i
γi

≡ max
w,w0

min
i
yi

(
w

||w|| · xi +
w0

||w||

)

• This turns out to be inconvenient for optimization, however. . .
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Treating the γi as constraints

• From the definition of margin, we have:

M ≤ γi = yi

(
w

‖w|| · xi +
w0

‖w‖

)
∀i

• This suggests:
maximize M

with respect to w, w0

subject to yi

(
w
‖w‖ · xi +

w0
‖w‖

)
≥M for all i

• Problems:

– w appears nonlinearly in the constraints.
– This problem is underconstrained. If (w, w0,M) is an optimal solution,

then so is (βw, βw0,M) for any β > 0.
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Adding a constraint

• Let’s try adding the constraint that ‖w‖M = 1.

• This allows us to rewrite the objective function and constraints as:
min ‖w‖

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1

• This is really nice because the constraints are linear.

• The objective function ‖w‖ is still a bit awkward.
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Final formulation

• Let’s maximize ‖w‖2 instead of ‖w‖.
(Taking the square is a monotone transformation, as ‖w‖ is postive, so
this doesn’t change the optimal solution.)

• This gets us to:
min ‖w‖2

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1

• This we can solve! How?

– It is a quadratic programming (QP) problem—a standard type of
optimization problem for which many efficient packages are available.

– Better yet, it’s a convex (positive semidefinite) QP
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Example
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w = [49.6504 46.8962]   w0 = −48.6936
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x
2

w = [11.7959 12.8066]   w0 = −12.9174

We have a solution, but no support vectors yet...

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016 31



Lagrange multipliers for inequality constraints (revisited)

• Suppose we have the following optimization problem, called primal:

min
w
f(w)

such that gi(w) ≤ 0, i = 1 . . . k

• We define the generalized Lagrangian:

L(w, α) = f(w) +

k∑

i=1

αigi(w), (1)

where αi, i = 1 . . . k are the Lagrange multipliers.
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A different optimization problem

• Consider P(w) = maxα:αi≥0L(w, α)

• Observe that the follow is true (see extra notes):

P(w) =

{
f(w) if all constraints are satisfied
+∞ otherwise

• Hence, instead of computing minw f(w) subject to the original
constraints, we can compute:

p∗ = min
w
P(w) = min

w
max
α:αi≥0

L(w, α)
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Dual optimization problem

• Let d∗ = maxα:αi≥0 minwL(w, α) (max and min are reversed)

• We can show that d∗ ≤ p∗.
– Let p∗ = L(wp, αp)
– Let d∗ = L(wd, αd)
– Then d∗ = L(wd, αd) ≤ L(wp, αd) ≤ L(wp, αp) = p∗.
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Dual optimization problem

• If f , gi are convex and the gi can all be satisfied simultaneously for some
w, then we have equality: d∗ = p∗ = L(w∗, α∗)

• Moreover w∗, α∗ solve the primal and dual if and only if they satisfy the
following conditions (called Karush-Kunh-Tucker):

∂

∂wi
L(w∗, α∗) = 0, i = 1 . . . n (2)

α∗i gi(w
∗) = 0, i = 1 . . . k (3)

gi(w
∗) ≤ 0, i = 1 . . . k (4)

α∗i ≥ 0, i = 1 . . . k (5)
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Back to maximum margin perceptron

• We wanted to solve (rewritten slightly):
min 1

2‖w‖2
w.r.t. w, w0

s.t. 1− yi(w · xi + w0) ≤ 0

• The Lagrangian is:

L(w, w0, α) =
1

2
‖w‖2 +

∑

i

αi(1− yi(w · xi + w0))

• The primal problem is: minw,w0 maxα:αi≥0L(w, w0, α)

• We will solve the dual problem: maxα:αi≥0 minw,w0 L(w, w0, α)

• In this case, the optimal solutions coincide, because we have a quadratic
objective and linear constraints (both of which are convex).
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Solving the dual

• From KKT (2), the derivatives of L(w, w0, α) wrt w, w0 should be 0

• The condition on the derivative wrt w0 gives
∑
iαiyi = 0

• The condition on the derivative wrt w gives:

w =
∑

i

αiyixi

⇒ Just like for the perceptron with zero initial weights, the optimal solution
for w is a linear combination of the xi, and likewise for w0.

• The output is

hw,w0(x) = sign

(
m∑

i=1

αiyi(xi · x) + w0

)

⇒ Output depends on weighted dot product of input vector with training
examples
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Solving the dual (II)

• By plugging these back into the expression for L, we get:

max
α

∑

i

αi −
1

2

∑

i,j

yiyjαiαj(xi · xj)

with constraints: αi ≥ 0 and
∑
iαiyi = 0
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The support vectors

• Suppose we find optimal αs (e.g., using a standard QP package)

• The αi will be > 0 only for the points for which 1− yi(w · xi+w0) = 0

• These are the points lying on the edge of the margin, and they are called
support vectors, because they define the decision boundary

• The output of the classifier for query point x is computed as:

sgn

(
m∑

i=1

αiyi(xi · x) + w0

)

Hence, the output is determined by computing the dot product of the
point with the support vectors!
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Example

Support vectors are in bold
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Non-linearly separable data
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• A linear boundary might be too simple to capture the class structure.

• One way of getting a nonlinear decision boundary in the input space is to
find a linear decision boundary in an expanded space (e.g., for polynomial
regression.)

• Thus, xi is replaced by φ(xi), where φ is called a feature mapping
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Margin optimization in feature space

• Replacing xi with φ(xi), the optimization problem to find w and w0

becomes:
min ‖w‖2

w.r.t. w, w0

s.t. yi(w · φ(xi) + w0) ≥ 1

• Dual form:
max

∑m
i=1αi − 1

2

∑m
i,j=1 yiyjαiαjφ(xi) · φ(xj)

w.r.t. αi
s.t. 0 ≤ αi∑m

i=1αiyi = 0
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Feature space solution

• The optimal weights, in the expanded feature space, are w =∑m
i=1αiyiφ(xi).

• Classification of an input x is given by:

hw,w0(x) = sign

(
m∑

i=1

αiyiφ(xi) · φ(x) + w0

)

⇒ Note that to solve the SVM optimization problem in dual form and to
make a prediction, we only ever need to compute dot-products of feature
vectors.
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Kernel functions

• Whenever a learning algorithm (such as SVMs) can be written in terms
of dot-products, it can be generalized to kernels.

• A kernel is any function K : Rn × Rn 7→ R which corresponds to a dot
product for some feature mapping φ:

K(x1,x2) = φ(x1) · φ(x2) for some φ.

• Conversely, by choosing feature mapping φ, we implicitly choose a kernel
function

• Recall that φ(x1) · φ(x2) = cos∠(x1,x2) where ∠ denotes the angle
between the vectors, so a kernel function can be thought of as a notion
of similarity.
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The “kernel trick”

• If we work with the dual, we do not actually have to ever compute the
feature mapping φ. We just have to compute the similarity K.

• That is, we can solve the dual for the αi:
max

∑m
i=1αi − 1

2

∑m
i,j=1 yiyjαiαjK(xi,xj)

w.r.t. αi
s.t. 0 ≤ αi∑m

i=1αiyi = 0

• The class of a new input x is computed as:

hw,w0(x) = sign

(
(

m∑

i=1

αiyiφ(xi)) · φ(x) + w0

)
= sign

(
m∑

i=1

αiyiK(xi,x) + w0

)

• Often, K(·, ·) can be evaluated in O(n) time—a big savings!
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Regularization with SVMs

• Kernels are a powerful tool for allowing non-linear, complex functions

• But now the number of parameters can be as high as the number of
instances!

• With a very specific, non-linear kernel, each data point may be in its own
partition

• With linear and logistic regression, we used regularization to avoid
overfitting

• We need a method for allowing regularization with SVMs as well.

COMP-652 and ECSE-608, Lecture 6 - January 28, 2016 46



Soft margin classifiers

• Recall that in the linearly separable case, we compute the solution to the
following optimization problem:

min 1
2‖w‖2

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1

• If we want to allow misclassifications, we can relax the constraints to:

yi(w · xi + w0) ≥ 1− ξi

• If ξi ∈ (0, 1), the data point is within the margin

• If ξi ≥ 1, then the data point is misclassified

• We define the soft error as
∑
i ξi

• We will have to change the criterion to reflect the soft errors
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New problem formulation with soft errors

• Instead of:
min 1

2‖w‖2
w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1

we want to solve:
min 1

2‖w‖2 + C
∑
i ξi

w.r.t. w, w0, ξi
s.t. yi(w · xi + w0) ≥ 1− ξi, ξi ≥ 0

• Note that soft errors include points that are misclassified, as well as
points within the margin

• There is a linear penalty for both categories

• The choice of the constant C controls overfitting
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A built-in overfitting knob

min 1
2‖w‖2 + C

∑
i ξi

w.r.t. w, w0, ξi
s.t. yi(w · xi + w0) ≥ 1− ξi

ξi ≥ 0

• If C is 0, there is no penalty for soft errors, so the focus is on maximizing
the margin, even if this means more mistakes

• If C is very large, the emphasis on the soft errors will cause decreasing
the margin, if this helps to classify more examples correctly.

• Internal cross-validation is a good way to choose C appropriately
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Lagrangian for the new problem

• Like before, we can write a Lagrangian for the problem and then use the
dual formulation to find the optimal parameters:

L(w, w0, α, ξ, µ) =
1

2
||w||2 + C

∑

i

ξi

+
∑

i

αi (1− ξi − yi(wi · xi + w0)) +
∑

i

µiξi

• All the previously described machinery can be used to solve this problem

• Note that in addition to αi we have coefficients µi, which ensure that
the errors are positive, but do not participate in the decision boundary
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Soft margin optimization with kernels

• Replacing xi with φ(xi), the optimization problem to find w and w0

becomes:
min ‖w‖2 + C

∑
i ζi

w.r.t. w, w0, ζi
s.t. yi(w · φ(xi) + w0) ≥ (1− ζi)

ζi ≥ 0

• Dual form and solution have similar forms to what we described last
time, but in terms of kernels
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Getting SVMs to work in practice

• Two important choices:

– Kernel (and kernel parameters)
– Regularization parameter C

• The parameters may interact!

E.g. for Gaussian kernel, the larger the width of the kernel, the more
biased the classifier, so low C is better

• Together, these control overfitting: always do an internal parameter
search, using a validation set!

• Overfitting symptoms:

– Low margin
– Large fraction of instances are support vectors
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Solving the quadratic optimization problem

• Many approaches exist

• Because we have constraints, gradient descent does not apply directly
(the optimum might be outside of the feasible region)

• Platt’s algorithm is the fastest current approach, based on coordinate
ascent
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Coordinate ascent

• Suppose you want to find the maximum of some function F (α1, . . . αn)

• Coordinate ascent optimizes the function by repeatedly picking an αi
and optimizing it, while all other parameters are fixed

• There are different ways of looping through the parameters:

– Round-robin
– Repeatedly pick a parameter at random
– Choose next the variable expected to make the largest improvement
– ...
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Example 22
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The ellipses in the figure are the contours of a quadratic function that
we want to optimize. Coordinate ascent was initialized at (2,−2), and also
plotted in the figure is the path that it took on its way to the global maximum.
Notice that on each step, coordinate ascent takes a step that’s parallel to one
of the axes, since only one variable is being optimized at a time.

9.2 SMO

We close off the discussion of SVMs by sketching the derivation of the SMO
algorithm. Some details will be left to the homework, and for others you
may refer to the paper excerpt handed out in class.

Here’s the (dual) optimization problem that we want to solve:

maxα W (α) =
m∑

i=1

αi − 1

2

m∑

i,j=1

y(i)y(j)αiαj〈x(i), x(j)〉. (17)

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m (18)
m∑

i=1

αiy
(i) = 0. (19)

Lets say we have set of αi’s that satisfy the constraints (18-19). Now,
suppose we want to hold α2, . . . , αm fixed, and take a coordinate ascent step
and reoptimize the objective with respect to α1. Can we make any progress?
The answer is no, because the constraint (19) ensures that

α1y
(1) = −

m∑

i=2

αiy
(i).
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Our optimization problem (dual form)

max
α

∑

i

αi −
1

2

∑

i,j

yiyjαiαj(φ(xi) · φ(xj))

with constraints: 0 ≤ αi ≤ C and
∑
iαiyi = 0

• Suppose we want to optimize for α1 while α2, . . . αn are fixed

• We cannot do it because α1 will be completely determined by the last
constraint: α1 = −y1

∑m
i=2αiyi

• Instead, we have to optimize pairs of parameters αi, αj together
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SMO

• Suppose that we want to optimize α1 and α2 together, while all other
parameters are fixed.

• We know that y1α1 + y2α2 = −∑m
i=1 yiαi = ξ, where ξ is a constant

• So α1 = y1(ξ − y2α2) (because y1 is either +1 or −1 so y2
1 = 1)

• This defines a line, and any pair α1, α2 which is a solution has to be on
the line
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SMO (II)

• We also know that 0 ≤ α1 ≤ C and 0 ≤ α2 ≤ C, so the solution has to
be on the line segment inside the rectangle below

24

α2

α1

α1 α2

C

C

(1)
+

(2)y y =ζH

L

From the constraints (18), we know that α1 and α2 must lie within the box
[0, C]× [0, C] shown. Also plotted is the line α1y

(1) +α2y
(2) = ζ, on which we

know α1 and α2 must lie. Note also that, from these constraints, we know
L ≤ α2 ≤ H; otherwise, (α1, α2) can’t simultaneously satisfy both the box
and the straight line constraint. In this example, L = 0. But depending on
what the line α1y

(1) + α2y
(2) = ζ looks like, this won’t always necessarily be

the case; but more generally, there will be some lower-bound L and some
upper-bound H on the permissable values for α2 that will ensure that α1, α2

lie within the box [0, C] × [0, C].
Using Equation (20), we can also write α1 as a function of α2:

α1 = (ζ − α2y
(2))y(1).

(Check this derivation yourself; we again used the fact that y(1) ∈ {−1, 1} so
that (y(1))2 = 1.) Hence, the objective W (α) can be written

W (α1, α2, . . . , αm) = W ((ζ − α2y
(2))y(1), α2, . . . , αm).

Treating α3, . . . , αm as constants, you should be able to verify that this is
just some quadratic function in α2. I.e., this can also be expressed in the
form aα2

2 + bα2 + c for some appropriate a, b, and c. If we ignore the “box”
constraints (18) (or, equivalently, that L ≤ α2 ≤ H), then we can easily
maximize this quadratic function by setting its derivative to zero and solving.
We’ll let αnew,unclipped

2 denote the resulting value of α2. You should also be
able to convince yourself that if we had instead wanted to maximize W with
respect to α2 but subject to the box constraint, then we can find the resulting
value optimal simply by taking αnew,unclipped

2 and “clipping” it to lie in the
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SMO(III)

• By plugging α1 back in the optimization criterion, we obtain a quadratic
function of α2, whose optimum we can find exactly

• If the optimum is inside the rectangle, we take it.

• If not, we pick the closest intersection point of the line and the rectangle

• This procedure is very fast because all these are simple computations.
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Interpretability

• SVMs are not very intuitive, but typically are more interpretable than
neural nets, if you look at the machine and the misclassifications

• E.g. Ovarian cancer data (Haussler) - 31 tissue samples of 3 classes,
misclassified examples wrongly labelled

• But no biological plausibility!

• Hard to interpret if the percentage of instances that are recruited as
support vectors is high
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Complexity

• Quadratic programming is expensive in the number of training examples

• Platt’s SMO algorithm is quite fast though, and other fancy optimization
approaches are available

• Best packages can handle 50, 000+ instances, but not more than 100, 000

• On the other hand, number of attributes can be very high (strength
compared to neural nets)

• Evaluating a SVM is slow if there are a lot of support vectors.

• Dictionary methods attempt to select a subset of the data on which to
train.
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Passive supervised learning

• The environment provides labelled data in the form of pairs (x, y)

• We can process the examples either as a batch or one at a time, with
the goal of producing a predictor of y as a function of x

• We assume that there is an underlying distribution P generating the
examples

• Each example is drawn i.i.d. from P

• What if instead we are allowed to ask for particular examples?

• Intuitively, if we are allowed to ask questions, and if we are smart about
what we want to know, fewer examples may be necessary
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Semi-Supervised and Active Learning

Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.

Unlabeled points Supervised learning Semisupervised and
active learning

• Suppose you had access to a lot of unlabeled data
E.g. all the documents on the web
E.g. all the pictures on Instagram

• You can also get some labelled data, but not much

• How can we take advantage of the unlabeled data to improve supervised
learning performance?
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