Lecture 5: More on logistic regression. Second-order
methods. Kernels

e Logistic regression
e Regularization

e Kernelizing linear methods

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

Recall: Logistic regression

e Hypothesis is a logistic function of a linear combination of inputs:

1
Alx) = 1 + exp(wlx)

e \We interpret h(x) as P(y = 1|x)

e Then the log-odds ratio, In (%) = wlx is linear

e Optimizes the cross-entropy error function :

Jp(w) = — (Z yilog h(xi) + (1 — y;) log(l — h(Xz')))
i=1
using gradient descent (or ascent on the log likelihood of the data)

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

Maximization procedure: Gradient ascent

e First we compute the gradient of log L(w) wrt w

e The update rule is:

w < w+aVlog L(w W+Oéz xi=w+aX (y—y

where o € (0, 1) is a step-size or learning rate parameter

e If one uses features of the input, we have:
w—w+adl(y —9)

e The step size «v is a parameter for which we have to choose a “good”
value

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

Roadmap

e |f the cost function is convex then gradient descent will converge to the
optimal solution for an appropriate choice of the learning rates.

e We will show that the cross-entropy error function is convex.
e \We will see how we can use a second-order method to choose “optimal”

learning rates.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

Convexity
e A function f: RY — R is convex if for all a,b € R%, X\ € [0, 1]:

f(Aa+ (1=A)b) < Af(a)+ (1 —A)f(b).

e If f and g are convex functions, af + Bg is also convex for any real
numbers o and S.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 5

Characterizations of convexity

e First-order characterization:
fis convex < for all a,b: f(a) > f(b) + Vf(b)' (a—b)

(the function is globally above the tangent at b).
e Second-order characterization:

f is convex < the Hessian of f is positive semi-definite.

The Hessian contains the second-order derivatives of f:

0 f

H, ,=—"
& (%Z@xj

It is positive semi-definite if a' Ha > 0 for all a € R?,

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

Convexity of the cost function

J(w) = — (Z yilogo(w'x;) + (1 — y;) log(1 — O'(WTXZ'))>

1=1

where o(z) = 1/(1 4+ e~?) (check that ¢'(2) = o (2)(1 — o(2))).

e We show that —logo(w 'x) and —log(1 — o(w 'x)) are convex in w:
Vw (0(wx) o' (w'x)Ve(w'x
Vw (—logo(w'x)) = — O'((WTX)) = — (O'(E’VTX()) = (o(w'x) — 1)x

V2

(—logo(w'x)) = Vy (o(w'x)x) = o(w'x)(1 — o(w'x))xx"

= It is easy to check that this matrix is positive semi-definite for any x.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 7

Convexity of the cost function

J(w)=— (Z yilogo(w'x;) + (1 — ;) log(1 — O‘(WTXi))>

where o(z) = 1/(1 4+ e~?) (check that ¢'(2) = o (2)(1 — 0(2))).

e Similarly you can show that

Vw (—log(l — o(w'x))) = o(w'x)x
Vs (—log(1l — O'(WTX))) =o(w'x)(1 —o(w'x))xx"

= J(w) is convex in w.

= The gradient of J is X' (y —y) where y; = o(w ' x;) = h(x;).

= The Hessian of J is X'RX where R is diagonal with entries R;; =
h(x;)(1 — h(x;)).

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

Another algorithm for optimization

e Recall Newton's method for finding the zero of a function g : R — R
e At point w’, approximate the function by a straight line (its tangent)

e Solve the linear equation for where the tangent equals 0, and move the
parameter to this point:

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

Application to machine learning

e Suppose for simplicity that the error function J has only one parameter

e \We want to optimize J, so we can apply Newton’'s method to find the
zeros of J' = %J

e \We obtain the iteration:
i1 J’(wz)

w =W — —/—<

J”(’wi)

e Note that there is no step size parameter!

e This is a second-order method, because it requires computing the second
derivative

e But, if our error function is quadratic, this will find the global optimum
in one step!

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 10

Second-order methods: Multivariate setting

e |f we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives

of J:
0%J

Hi' _
J 8w26’w3

e The inverse of the Hessian gives the “optimal” learning rates

e The weights are updated as:

wew—H 'V, J

e This is also called Newton-Raphson method for logistic regression, or
Fisher scoring

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 11

Which method is better?

e Newton's method usually requires significantly fewer iterations than
gradient descent

e Computing the Hessian requires a batch of data, so there is no natural
on-line algorithm

e Inverting the Hessian explicitly is expensive, but almost never necessary

e Computing the product of a Hessian with a vector can be done in linear
time (Pearlmutter, 1993), which helps also to compute the product of
the inverse Hessian with a vector without explicitly computing H

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 12

Newton-Raphson for logistic regression

e Leads to a nice algorithm called iteratively reweighted least squares (or
iterative recursive least squares)
e The Hessian has the form:

H-d'R®

where R is the diagonal matrix of h(x;)(1 — h(x;)) (you can check that
this is the form of the second derivative).

e The weight update becomes:
wiw— (&' RE®) '@ (y—y)
which can be rewritten as the solution of a weighted least square problem:

w— (P'R®)'®'R(®w - R}y —y))

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 13

Regularization for logistic regression

e One can do regularization for logistic regression just like in the case of
linear regression

e Recall regularization makes a statement about the weights, so does not
affect the error function

e Eg: L- regularization will have the optimization criterions:

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 14

Probabilistic view of logistic regression
e Consider the additive noise model we discussed before:
Yi = hw(Xi) + €

where € are drawn iid from some distribution
o At first glance, log reg does not fit very well

e We will instead think of a latent variable ¢; such that:
Ui = hw(x;) + €
e Then the output is generated as:

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

15

Generalized Linear Models

e Logistic regression is a special case of a generalized linear model:
ElY | x] =g }w'x).

g is called the link function, it relates the mean of the response to the
linear predictor.
e Linear regression: E|Y |x] = E[w 'x+¢ | x] = w'x (g is the identity).

-

e Logistic regression: EY | x| =P(Y =1 |x) =0(W'Xx)

e Poisson regression: E[Y | x] = exp(w 'x) (for count data).

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 16

Linear regression with feature vectors revisited

e Find the weight vector w which minimizes the (regularized) error function:

T(w) = H(@w —y) (@w —y) + Sw'w

e Suppose instead of the closed-form solution, we just take the gradient
and rearrange the terms

e [he solution takes the form:

m

Z w ¢ Xi) — Yi)P(x;) = Zai¢(xi) =®"a

1=1

>/|b—*

where a is a vector of size m (number of instances) with a; =
1
—X(WTCb(Xi) — i)

e Main idea: use a instead of w as parameter vector

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 17

Re-writing the error function

e Instead of J(w) we have J(a):

1 1 A
J(a) = iaTé[)(I)TfI)@Ta —al®ddply + iny — §aT<I><I>Ta
e Denote PP = K
e Hence, we can re-write this as:
17 T 1 7 A r
J(a) = 52 KKa — a Ky—|—2y y + 5 Ka

e This is quadratic in a, and we can set the gradient to 0 and solve.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

18

Dual-view regression

e By setting the gradient to 0 we get:

a=(K+M,,) 'y

e Note that this is similar to re-formulating a weight vector in terms of a

linear combination of instances

e Again, the feature mapping is not needed either to learn or to make

predictions!

e This approach is useful if the feature space is very large

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017

19

Kernel functions
e Whenever a learning algorithm can be written in terms of dot-products,
it can be generalized to kernels.

e A kernel is any function K : R™ x R™ — R which corresponds to a dot
product for some feature mapping ¢:

K(x1,%2) = ¢(x1) - #(x2) for some ¢.

e Conversely, by choosing feature mapping ¢, we implicitly choose a kernel
function

e Recall that ¢(x1) - ¢(x2) = cos £(x1,x2) where £ denotes the angle
between the vectors, so a kernel function can be thought of as a notion
of similarity.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 20

Example: Quadratic kernel

o Let K(x,2) = (x-2)°.
e Is this a kernel?

n n
K(x,z) = E T2 E Tizi | = g T2 T %5
i—1 j=1

i,je{1l...n}
=) (miwy) (2i)
i,je{l...n}
e Hence, it is a kernel, with feature mapping:
2 2 2
o(x) = (x], x1x2, ..., T1Tp, T2X1, Ty ..., Ty)

Feature vector includes all squares of elements and all cross terms.
e Note that computing ¢ takes O(n?) but computing K takes only O(n)!

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 21

