Lecture 5: More on logistic regression. Second-order methods. Kernels

- Logistic regression
- Regularization
- Kernelizing linear methods

Recall: Logistic regression

- Hypothesis is a logistic function of a linear combination of inputs:

$$
h(\mathbf{x})=\frac{1}{1+\exp \left(\mathbf{w}^{T} \mathbf{x}\right)}
$$

- We interpret $h(\mathbf{x})$ as $P(y=1 \mid \mathbf{x})$
- Then the log-odds ratio, $\ln \left(\frac{P(y=1 \mid \mathbf{x})}{P(y=0 \mid \mathbf{x})}\right)=\mathbf{w}^{T} \mathbf{x}$ is linear
- Optimizes the cross-entropy error function :

$$
J_{D}(\mathbf{w})=-\left(\sum_{i=1}^{m} y_{i} \log h\left(\mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-h\left(\mathbf{x}_{i}\right)\right)\right)
$$

using gradient descent (or ascent on the log likelihood of the data)

Maximization procedure: Gradient ascent

- First we compute the gradient of $\log L(\mathbf{w})$ wrt \mathbf{w}
- The update rule is:

$$
\mathbf{w} \leftarrow \mathbf{w}+\alpha \nabla \log L(\mathbf{w})=\mathbf{w}+\alpha \sum_{i=1}^{m}\left(y_{i}-h_{\mathbf{w}}\left(\mathbf{x}_{\mathbf{i}}\right)\right) \mathbf{x}_{\mathbf{i}}=\mathbf{w}+\alpha \mathbf{X}^{T}(\mathbf{y}-\hat{\mathbf{y}})
$$

where $\alpha \in(0,1)$ is a step-size or learning rate parameter

- If one uses features of the input, we have:

$$
\mathbf{w} \leftarrow \mathbf{w}+\alpha \boldsymbol{\Phi}^{T}(\mathbf{y}-\hat{\mathbf{y}})
$$

- The step size α is a parameter for which we have to choose a "good" value

Roadmap

- If the cost function is convex then gradient descent will converge to the optimal solution for an appropriate choice of the learning rates.
- We will show that the cross-entropy error function is convex.
- We will see how we can use a second-order method to choose "optimal" learning rates.

Convexity

- A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if for all $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{d}, \lambda \in[0,1]$:

$$
f(\lambda \mathbf{a}+(1-\lambda) \mathbf{b}) \leq \lambda f(\mathbf{a})+(1-\lambda) f(\mathbf{b}) .
$$

- If f and g are convex functions, $\alpha f+\beta g$ is also convex for any real numbers α and β.

Characterizations of convexity

- First-order characterization:

$$
f \text { is convex } \Leftrightarrow \text { for all } \mathbf{a}, \mathbf{b}: \quad f(\mathbf{a}) \geq f(\mathbf{b})+\nabla f(\mathbf{b})^{\top}(\mathbf{a}-\mathbf{b})
$$

(the function is globally above the tangent at \mathbf{b}).

- Second-order characterization:
f is convex \Leftrightarrow the Hessian of f is positive semi-definite.
The Hessian contains the second-order derivatives of f :

$$
\mathbf{H}_{i, j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} .
$$

It is positive semi-definite if $\mathbf{a}^{\top} \mathbf{H a} \geq 0$ for all $\mathbf{a} \in \mathbb{R}^{d}$.

Convexity of the cost function

$$
J(\mathbf{w})=-\left(\sum_{i=1}^{m} y_{i} \log \sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)\right)\right)
$$

where $\sigma(z)=1 /\left(1+e^{-z}\right)\left(\right.$ check that $\left.\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))\right)$.

- We show that $-\log \sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)$ and $-\log \left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right)$ are convex in \mathbf{w} :

$$
\nabla_{\mathbf{w}}\left(-\log \sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right)=-\frac{\nabla_{\mathbf{w}}\left(\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right)}{\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)}=-\frac{\sigma^{\prime}\left(\mathbf{w}^{\top} \mathbf{x}\right) \nabla_{\mathbf{w}}\left(\mathbf{w}^{\top} \mathbf{x}\right)}{\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)}=\left(\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)-1\right) \mathbf{x}
$$

$$
\nabla_{\mathbf{w}}^{2}\left(-\log \sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right)=\nabla_{\mathbf{w}}\left(\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right) \mathbf{x}\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right) \mathbf{x} \mathbf{x}^{\top}
$$

\Rightarrow It is easy to check that this matrix is positive semi-definite for any \mathbf{x}.

Convexity of the cost function

$$
J(\mathbf{w})=-\left(\sum_{i=1}^{m} y_{i} \log \sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)\right)\right)
$$

where $\sigma(z)=1 /\left(1+e^{-z}\right)\left(\right.$ check that $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$).

- Similarly you can show that

$$
\begin{gathered}
\nabla_{\mathbf{w}}\left(-\log \left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right)\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right) \mathbf{x} \\
\nabla_{\mathbf{w}}^{2}\left(-\log \left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right)\right)=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)\right) \mathbf{x} \mathbf{x}^{\top}
\end{gathered}
$$

$\Rightarrow J(\mathbf{w})$ is convex in \mathbf{w}.
\Rightarrow The gradient of J is $\mathbf{X}^{\top}(\hat{\mathbf{y}}-\mathbf{y})$ where $\hat{\mathbf{y}}_{i}=\sigma\left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)=h\left(\mathbf{x}_{i}\right)$.
\Rightarrow The Hessian of J is $\mathbf{X}^{\top} \mathbf{R X}$ where \mathbf{R} is diagonal with entries $\mathbf{R}_{i, i}=$ $h\left(\mathbf{x}_{i}\right)\left(1-h\left(\mathbf{x}_{i}\right)\right)$.

Another algorithm for optimization

- Recall Newton's method for finding the zero of a function $g: \mathbb{R} \rightarrow \mathbb{R}$
- At point w^{i}, approximate the function by a straight line (its tangent)
- Solve the linear equation for where the tangent equals 0 , and move the parameter to this point:

$$
w^{i+1}=w^{i}-\frac{g\left(w^{i}\right)}{g^{\prime}\left(w^{i}\right)}
$$

Application to machine learning

- Suppose for simplicity that the error function J has only one parameter
- We want to optimize J, so we can apply Newton's method to find the zeros of $J^{\prime}=\frac{d}{d w} J$
- We obtain the iteration:

$$
w^{i+1}=w^{i}-\frac{J^{\prime}\left(w^{i}\right)}{J^{\prime \prime}\left(w^{i}\right)}
$$

- Note that there is no step size parameter!
- This is a second-order method, because it requires computing the second derivative
- But, if our error function is quadratic, this will find the global optimum in one step!

Second-order methods: Multivariate setting

- If we have an error function J that depends on many variables, we can compute the Hessian matrix, which contains the second-order derivatives of J :

$$
\mathbf{H}_{i j}=\frac{\partial^{2} J}{\partial w_{i} \partial w_{j}}
$$

- The inverse of the Hessian gives the "optimal" learning rates
- The weights are updated as:

$$
\mathbf{w} \leftarrow \mathbf{w}-\mathbf{H}^{-1} \nabla_{\mathbf{w}} J
$$

- This is also called Newton-Raphson method for logistic regression, or Fisher scoring

Which method is better?

- Newton's method usually requires significantly fewer iterations than gradient descent
- Computing the Hessian requires a batch of data, so there is no natural on-line algorithm
- Inverting the Hessian explicitly is expensive, but almost never necessary
- Computing the product of a Hessian with a vector can be done in linear time (Pearlmutter, 1993), which helps also to compute the product of the inverse Hessian with a vector without explicitly computing \mathbf{H}

Newton-Raphson for logistic regression

- Leads to a nice algorithm called iteratively reweighted least squares (or iterative recursive least squares)
- The Hessian has the form:

$$
\mathbf{H}=\boldsymbol{\Phi}^{T} \mathbf{R} \boldsymbol{\Phi}
$$

where \mathbf{R} is the diagonal matrix of $h\left(\mathbf{x}_{i}\right)\left(1-h\left(\mathbf{x}_{i}\right)\right)$ (you can check that this is the form of the second derivative).

- The weight update becomes:

$$
\mathbf{w} \leftarrow \mathbf{w}-\left(\boldsymbol{\Phi}^{\top} \mathbf{R} \boldsymbol{\Phi}\right)^{-1} \mathbf{\Phi}^{\top}(\hat{\mathbf{y}}-\mathbf{y})
$$

which can be rewritten as the solution of a weighted least square problem:

$$
\mathbf{w} \leftarrow\left(\boldsymbol{\Phi}^{T} \mathbf{R} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{R}\left(\boldsymbol{\Phi} \mathbf{w}-\mathbf{R}^{-1}(\hat{\mathbf{y}}-\mathbf{y})\right)
$$

Regularization for logistic regression

- One can do regularization for logistic regression just like in the case of linear regression
- Recall regularization makes a statement about the weights, so does not affect the error function
- Eg: L_{2} regularization will have the optimization criterions:

$$
J(\mathbf{w})=J_{D}(\mathbf{w})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

Probabilistic view of logistic regression

- Consider the additive noise model we discussed before:

$$
y_{i}=h_{\mathrm{w}}\left(\mathbf{x}_{i}\right)+\epsilon
$$

where ϵ are drawn iid from some distribution

- At first glance, log reg does not fit very well
- We will instead think of a latent variable \hat{y}_{i} such that:

$$
\hat{y}_{i}=h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)+\epsilon
$$

- Then the output is generated as:

$$
y_{i}=1 \text { iff } \hat{y}_{i}>0
$$

Generalized Linear Models

- Logistic regression is a special case of a generalized linear model:

$$
E[Y \mid \mathbf{x}]=g^{-1}\left(\mathbf{w}^{\top} \mathbf{x}\right)
$$

g is called the link function, it relates the mean of the response to the linear predictor.

- Linear regression: $E[Y \mid \mathbf{x}]=E\left[\mathbf{w}^{\top} \mathbf{x}+\varepsilon \mid \mathbf{x}\right]=\mathbf{w}^{\top} \mathbf{x}(g$ is the identity $)$.
- Logistic regression: $E[Y \mid \mathbf{x}]=P(Y=1 \mid \mathbf{x})=\sigma\left(\mathbf{w}^{\top} \mathbf{x}\right)$
- Poisson regression: $E[Y \mid \mathbf{x}]=\exp \left(\mathbf{w}^{\top} \mathbf{x}\right)$ (for count data).

Linear regression with feature vectors revisited

- Find the weight vector w which minimizes the (regularized) error function:

$$
J(\mathbf{w})=\frac{1}{2}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{y})^{T}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{y})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

- Suppose instead of the closed-form solution, we just take the gradient and rearrange the terms
- The solution takes the form:

$$
\mathbf{w}=-\frac{1}{\lambda} \sum_{i=1}^{m}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right) \phi\left(\mathbf{x}_{i}\right)=\sum_{i=1}^{m} a_{i} \phi\left(\mathbf{x}_{i}\right)=\boldsymbol{\Phi}^{T} \mathbf{a}
$$

where \mathbf{a} is a vector of size m (number of instances) with $a_{i}=$ $-\frac{1}{\lambda}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)$

- Main idea: use a instead of w as parameter vector

Re-writing the error function

- Instead of $J(\mathbf{w})$ we have $J(\mathbf{a})$:

$$
J(\mathbf{a})=\frac{1}{2} \mathbf{a}^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \mathbf{a}-\mathbf{a}^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \mathbf{y}+\frac{1}{2} \mathbf{y}^{T} \mathbf{y}+\frac{\lambda}{2} \mathbf{a}^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \mathbf{a}
$$

- Denote $\boldsymbol{\Phi} \boldsymbol{\Phi}^{T}=\mathbf{K}$
- Hence, we can re-write this as:

$$
J(\mathbf{a})=\frac{1}{2} \mathbf{a}^{T} \mathbf{K K} \mathbf{a}-\mathbf{a}^{T} \mathbf{K} \mathbf{y}+\frac{1}{2} \mathbf{y}^{T} \mathbf{y}+\frac{\lambda}{2} \mathbf{a}^{T} \mathbf{K} \mathbf{a}
$$

- This is quadratic in a, and we can set the gradient to 0 and solve.

Dual-view regression

- By setting the gradient to 0 we get:

$$
\mathbf{a}=\left(\mathbf{K}+\lambda \mathbf{I}_{m}\right)^{-1} \mathbf{y}
$$

- Note that this is similar to re-formulating a weight vector in terms of a linear combination of instances
- Again, the feature mapping is not needed either to learn or to make predictions!
- This approach is useful if the feature space is very large

Kernel functions

- Whenever a learning algorithm can be written in terms of dot-products, it can be generalized to kernels.
- A kernel is any function $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \mapsto \mathbb{R}$ which corresponds to a dot product for some feature mapping ϕ :

$$
K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\phi\left(\mathbf{x}_{1}\right) \cdot \phi\left(\mathbf{x}_{2}\right) \text { for some } \phi
$$

- Conversely, by choosing feature mapping ϕ, we implicitly choose a kernel function
- Recall that $\phi\left(\mathbf{x}_{1}\right) \cdot \phi\left(\mathbf{x}_{2}\right)=\cos \angle\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ where \angle denotes the angle between the vectors, so a kernel function can be thought of as a notion of similarity.

Example: Quadratic kernel

- Let $K(\mathbf{x}, \mathbf{z})=(\mathbf{x} \cdot \mathbf{z})^{2}$.
- Is this a kernel?

$$
\begin{aligned}
K(\mathbf{x}, \mathbf{z}) & =\left(\sum_{i=1}^{n} x_{i} z_{i}\right)\left(\sum_{j=1}^{n} x_{j} z_{j}\right)=\sum_{i, j \in\{1 \ldots n\}} x_{i} z_{i} x_{j} z_{j} \\
& =\sum_{i, j \in\{1 \ldots n\}}\left(x_{i} x_{j}\right)\left(z_{i} z_{j}\right)
\end{aligned}
$$

- Hence, it is a kernel, with feature mapping:

$$
\phi(\mathbf{x})=\left\langle x_{1}^{2}, x_{1} x_{2}, \ldots, x_{1} x_{n}, x_{2} x_{1}, x_{2}^{2}, \ldots, x_{n}^{2}\right\rangle
$$

Feature vector includes all squares of elements and all cross terms.

- Note that computing ϕ takes $O\left(n^{2}\right)$ but computing K takes only $O(n)$!

