
Lecture 5: More on logistic regression. Second-order
methods. Kernels

• Logistic regression

• Regularization

• Kernelizing linear methods

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 1

Recall: Logistic regression

• Hypothesis is a logistic function of a linear combination of inputs:

h(x) =
1

1 + exp(wTx)

• We interpret h(x) as P (y = 1|x)
• Then the log-odds ratio, ln

(
P (y=1|x)
P (y=0|x)

)
= wTx is linear

• Optimizes the cross-entropy error function :

JD(w) = −

(
m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

)

using gradient descent (or ascent on the log likelihood of the data)

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 2

Maximization procedure: Gradient ascent

• First we compute the gradient of logL(w) wrt w

• The update rule is:

w← w+α∇ logL(w) = w+α

m∑
i=1

(yi−hw(xi))xi = w+αXT (y− ŷ)

where α ∈ (0, 1) is a step-size or learning rate parameter

• If one uses features of the input, we have:

w← w + αΦT (y − ŷ)

• The step size α is a parameter for which we have to choose a “good”
value

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 3

Roadmap

• If the cost function is convex then gradient descent will converge to the
optimal solution for an appropriate choice of the learning rates.

• We will show that the cross-entropy error function is convex.

• We will see how we can use a second-order method to choose “optimal”
learning rates.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 4

Convexity

• A function f : Rd → R is convex if for all a,b ∈ Rd, λ ∈ [0, 1]:

f(λa + (1− λ)b) ≤ λf(a) + (1− λ)f(b).

• If f and g are convex functions, αf + βg is also convex for any real
numbers α and β.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 5

Characterizations of convexity

• First-order characterization:

f is convex⇔ for all a,b : f(a) ≥ f(b) +∇f(b)>(a− b)

(the function is globally above the tangent at b).

• Second-order characterization:

f is convex ⇔ the Hessian of f is positive semi-definite.

The Hessian contains the second-order derivatives of f :

Hi,j =
∂2f

∂xi∂xj
.

It is positive semi-definite if a>Ha ≥ 0 for all a ∈ Rd.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 6

Convexity of the cost function

J(w) = −

(
m∑
i=1

yi log σ(w
>xi) + (1− yi) log(1− σ(w>xi))

)

where σ(z) = 1/(1 + e−z) (check that σ′(z) = σ(z)(1− σ(z))).

• We show that − log σ(w>x) and − log(1− σ(w>x)) are convex in w:

∇w

(
− log σ(w>x)

)
= −
∇w

(
σ(w>x)

)
σ(w>x)

= −σ
′(w>x)∇w(w

>x)

σ(w>x)
= (σ(w>x)− 1)x

∇2
w

(
− log σ(w>x)

)
= ∇w

(
σ(w>x)x

)
= σ(w>x)(1− σ(w>x))xx>

⇒ It is easy to check that this matrix is positive semi-definite for any x.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 7

Convexity of the cost function

J(w) = −

(
m∑
i=1

yi log σ(w
>xi) + (1− yi) log(1− σ(w>xi))

)

where σ(z) = 1/(1 + e−z) (check that σ′(z) = σ(z)(1− σ(z))).

• Similarly you can show that

∇w

(
− log(1− σ(w>x))

)
= σ(w>x)x

∇2
w

(
− log(1− σ(w>x))

)
= σ(w>x)(1− σ(w>x))xx>

⇒ J(w) is convex in w.

⇒ The gradient of J is X>(ŷ − y) where ŷi = σ(w>xi) = h(xi).

⇒ The Hessian of J is X>RX where R is diagonal with entries Ri,i =
h(xi)(1− h(xi)).

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 8

Another algorithm for optimization

• Recall Newton’s method for finding the zero of a function g : R→ R
• At point wi, approximate the function by a straight line (its tangent)

• Solve the linear equation for where the tangent equals 0, and move the
parameter to this point:

wi+1 = wi − g(wi)

g′(wi)

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 9

Application to machine learning

• Suppose for simplicity that the error function J has only one parameter

• We want to optimize J , so we can apply Newton’s method to find the
zeros of J ′ = d

dwJ

• We obtain the iteration:

wi+1 = wi − J ′(wi)

J ′′(wi)

• Note that there is no step size parameter!

• This is a second-order method, because it requires computing the second
derivative

• But, if our error function is quadratic, this will find the global optimum
in one step!

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 10

Second-order methods: Multivariate setting

• If we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives
of J :

Hij =
∂2J

∂wi∂wj

• The inverse of the Hessian gives the “optimal” learning rates

• The weights are updated as:

w← w −H−1∇wJ

• This is also called Newton-Raphson method for logistic regression, or
Fisher scoring

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 11

Which method is better?

• Newton’s method usually requires significantly fewer iterations than
gradient descent

• Computing the Hessian requires a batch of data, so there is no natural
on-line algorithm

• Inverting the Hessian explicitly is expensive, but almost never necessary

• Computing the product of a Hessian with a vector can be done in linear
time (Pearlmutter, 1993), which helps also to compute the product of
the inverse Hessian with a vector without explicitly computing H

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 12

Newton-Raphson for logistic regression

• Leads to a nice algorithm called iteratively reweighted least squares (or
iterative recursive least squares)

• The Hessian has the form:

H = ΦTRΦ

where R is the diagonal matrix of h(xi)(1− h(xi)) (you can check that
this is the form of the second derivative).

• The weight update becomes:

w← w − (Φ>RΦ)−1Φ>(ŷ − y)

which can be rewritten as the solution of a weighted least square problem:

w← (ΦTRΦ)−1ΦTR(Φw −R−1(ŷ − y))

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 13

Regularization for logistic regression

• One can do regularization for logistic regression just like in the case of
linear regression

• Recall regularization makes a statement about the weights, so does not
affect the error function

• Eg: L2 regularization will have the optimization criterions:

J(w) = JD(w) +
λ

2
wTw

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 14

Probabilistic view of logistic regression

• Consider the additive noise model we discussed before:

yi = hw(xi) + ε

where ε are drawn iid from some distribution

• At first glance, log reg does not fit very well

• We will instead think of a latent variable ŷi such that:

ŷi = hw(xi) + ε

• Then the output is generated as:

yi = 1 iff ŷi > 0

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 15

Generalized Linear Models

• Logistic regression is a special case of a generalized linear model:

E[Y | x] = g−1(w>x).

g is called the link function, it relates the mean of the response to the
linear predictor.

• Linear regression: E[Y | x] = E[w>x+ε | x] = w>x (g is the identity).

• Logistic regression: E[Y | x] = P (Y = 1 |x) = σ(w>x)

• Poisson regression: E[Y | x] = exp(w>x) (for count data).

• ...

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 16

Linear regression with feature vectors revisited

• Find the weight vector w which minimizes the (regularized) error function:

J(w) =
1

2
(Φw − y)T (Φw − y) +

λ

2
wTw

• Suppose instead of the closed-form solution, we just take the gradient
and rearrange the terms

• The solution takes the form:

w = −1

λ

m∑
i=1

(wTφ(xi)− yi)φ(xi) =
m∑
i=1

aiφ(xi) = ΦTa

where a is a vector of size m (number of instances) with ai =
−1
λ(w

Tφ(xi)− yi)
• Main idea: use a instead of w as parameter vector

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 17

Re-writing the error function

• Instead of J(w) we have J(a):

J(a) =
1

2
aTΦΦTΦΦTa− aTΦΦTy +

1

2
yTy +

λ

2
aTΦΦTa

• Denote ΦΦT = K

• Hence, we can re-write this as:

J(a) =
1

2
aTKKa− aTKy +

1

2
yTy +

λ

2
aTKa

• This is quadratic in a, and we can set the gradient to 0 and solve.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 18

Dual-view regression

• By setting the gradient to 0 we get:

a = (K + λIm)
−1y

• Note that this is similar to re-formulating a weight vector in terms of a
linear combination of instances

• Again, the feature mapping is not needed either to learn or to make
predictions!

• This approach is useful if the feature space is very large

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 19

Kernel functions

• Whenever a learning algorithm can be written in terms of dot-products,
it can be generalized to kernels.

• A kernel is any function K : Rn × Rn 7→ R which corresponds to a dot
product for some feature mapping φ:

K(x1,x2) = φ(x1) · φ(x2) for some φ.

• Conversely, by choosing feature mapping φ, we implicitly choose a kernel
function

• Recall that φ(x1) · φ(x2) = cos∠(x1,x2) where ∠ denotes the angle
between the vectors, so a kernel function can be thought of as a notion
of similarity.

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 20

Example: Quadratic kernel

• Let K(x, z) = (x · z)2.
• Is this a kernel?

K(x, z) =

(
n∑
i=1

xizi

) n∑
j=1

xjzj

 =
∑

i,j∈{1...n}

xizixjzj

=
∑

i,j∈{1...n}

(xixj) (zizj)

• Hence, it is a kernel, with feature mapping:

φ(x) = 〈x21, x1x2, . . . , x1xn, x2x1, x22, . . . , x2n〉

Feature vector includes all squares of elements and all cross terms.
• Note that computing φ takes O(n2) but computing K takes only O(n)!

COMP-652 and ECSE-608, Lecture 4 - January 17, 2017 21

