
Lecture 5: More on logistic regression. Second-order
methods. Kernels

• Logistic regression

• Regularization

• Kernelizing linear methods
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Recall: Logistic regression

• Hypothesis is a logistic function of a linear combination of inputs:

h(x) =
1

1 + exp(wTx)

• We interpret h(x) as P (y = 1|x)
• Optimizes the cross-entropy error function :

JD(w) = −

(
m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

)

using gradient descent (or ascent on the log likelihood of the data)
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Maximization procedure: Gradient ascent

• First we compute the gradient of logL(w) wrt w

• The update rule is:

w← w+α∇ logL(w) = w+α

m∑
i=1

(yi−hw(xi))xi = w+αXT (y− ŷ)

where α ∈ (0, 1) is a step-size or learning rate parameter

• If one uses features of the input, we have:

w← w + αΦT (y − ŷ)

• The step size α is a parameter for which we have to choose a “good”
value
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Another algorithm for optimization

• Recall Newton’s method for finding the zero of a function g : R→ R
• At point wi, approximate the function by a straight line (its tangent)

• Solve the linear equation for where the tangent equals 0, and move the
parameter to this point:

wi+1 = wi − g(wi)

g′(wi)
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Application to machine learning

• Suppose for simplicity that the error function J has only one parameter

• We want to optimize J , so we can apply Newton’s method to find the
zeros of J ′ = d

dwJ

• We obtain the iteration:

wi+1 = wi − J ′(wi)

J ′′(wi)

• Note that there is no step size parameter!

• This is a second-order method, because it requires computing the second
derivative

• But, if our error function is quadratic, this will find the global optimum
in one step!
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Second-order methods: Multivariate setting

• If we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives
of J :

Hij =
∂2J

∂wi∂wj

• The inverse of the Hessian gives the “optimal” learning rates

• The weights are updated as:

w← w −H−1∇wJ

• This is also called Newton-Raphson method for logistic regression, or
Fisher scoring
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Which method is better?

• Newton’s method usually requires significantly fewer iterations than
gradient descent

• Computing the Hessian requires a batch of data, so there is no natural
on-line algorithm

• Inverting the Hessian explicitly is expensive, but almost never necessary

• Computing the product of a Hessian with a vector can be done in linear
time (Pearlmutter, 1993), which helps also to compute the product of
the inverse Hessian with a vector without explicitly computing H

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 7



Newton-Raphson for logistic regression

• Leads to a nice algorithm called iterative recursive least squares

• The Hessian has the form:

H = ΦTRΦ

where R is the diagonal matrix of h(xi)(1− h(xi)) (you can check that
this is the form of the second derivative.

• The weight update becomes:

w← (ΦTRΦ)−1ΦTR(Φw −R−1(Φw − y))
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Regularization for logistic regression

• One can do regularization for logistic regression just like in the case of
linear regression

• Recall regularization makes a statement about the weights, so does not
affect the error function

• Eg: L2 regularization will have the optimization criterions:

J(w = JD(w) +
λ

2
wTw

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 9



Probabilistic view of logistic regression

• Consider the additive noise model we discussed before:

yi = hw(xi) + ε

where ε are drawn iid from some distribution

• At first glance, log reg does not fit very well

• We will instead think of a latent variable ŷi such that:

ŷi = hw(xi) + ε

• Then the output is generated as:

yi = 1 iff ŷi > 0

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 10



Graphical model for logistic regression
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Other versions of logistic regression
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Linear regression with feature vectors revisited

• Find the weight vector w which minimizes the (regularized) error function:

J(w) =
1

2
(Φw − y)T (Φw − y) +

λ

2
wTw

• Suppose instead of the closed-form solution, we just take the gradient
and rearrange the terms

• The solution takes the form:

w = −1

λ

m∑
i=1

(wTφ(xi)− yi)φ(xi) =
m∑
i=1

aiφ(xi) = ΦTa

where a is a vector of size m (number of instances) with ai =
−1
λ(w

Tφ(xi)− yi)
• Main idea: use a instead of w as parameter vector
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Re-writing the error function

• Instead of J(w) we have J(a):

J(a) =
1

2
aTΦΦTΦΦTa− aTΦΦTy +

1

2
yTy +

λ

2
aTΦΦTa

• Denote ΦΦT = K

• Hence, we can re-write this as:

J(a) =
1

2
aTKKa− aTKy +

1

2
yTy +

λ

2
aTKa

• This is quadratic in a, and we can set the gradient to 0 and solve.
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Dual-view regression

• By setting the gradient to 0 we get:

a = (K + λIm)
−1y

• Note that this is similar to re-formulating a weight vector in terms of a
linear combination of instances

• Again, the feature mapping is not needed either to learn or to make
predictions!

• This approach is useful if the feature space is very large
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Kernel functions

• Whenever a learning algorithm can be written in terms of dot-products,
it can be generalized to kernels.

• A kernel is any function K : Rn × Rn 7→ R which corresponds to a dot
product for some feature mapping φ:

K(x1,x2) = φ(x1) · φ(x2) for some φ.

• Conversely, by choosing feature mapping φ, we implicitly choose a kernel
function

• Recall that φ(x1) · φ(x2) = cos∠(x1,x2) where ∠ denotes the angle
between the vectors, so a kernel function can be thought of as a notion
of similarity.
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Example: Quadratic kernel

• Let K(x, z) = (x · z)2.
• Is this a kernel?

K(x, z) =

(
n∑
i=1

xizi

) n∑
j=1

xjzj

 =
∑

i,j∈{1...n}

xizixjzj

=
∑

i,j∈{1...n}

(xixj) (zizj)

• Hence, it is a kernel, with feature mapping:

φ(x) = 〈x2
1, x1x2, . . . , x1xn, x2x1, x

2
2, . . . , x

2
n〉

Feature vector includes all squares of elements and all cross terms.
• Note that computing φ takes O(n2) but computing K takes only O(n)!
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Polynomial kernels

• More generally, K(x, z) = (x · z)d is a kernel, for any positive integer d:

K(x, z) =

(
n∑
i=1

xizi

)d

• If we expanded the sum above in the obvious way, we get nd terms (i.e.
feature expansion)

• Terms are monomials (products of xi) with total power equal to d.

• If we use the primal form of the SVM, each of these will have a weight
associated with it!

• Curse of dimensionality: it is very expensive both to optimize and to
predict with an SVM in primal form

• However, evaluating the dot-product of any two feature vectors can be
done using K in O(n)!
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The “kernel trick”

• If we work with the dual, we do not actually have to ever compute the
feature mapping φ. We just have to compute the similarity K.

• In our case, we kernelized linear regression, as we do not need to look at
features to compute the parameter vector, but only at dot-products of
features.
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Some other (fairly generic) kernel functions

• K(x, z) = (1 + x · z)d – feature expansion has all monomial terms of
≤ d total power.

• Radial basis/Gaussian kernel:

K(x, z) = exp(−‖x− z‖2/2σ2)

The kernel has an infinite-dimensional feature expansion, but dot-
products can still be computed in O(n)!

• Sigmoidal kernel:

K(x, z) = tanh(c1x · z + c2)
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Making predictions in the dual view

• For a new input x, the prediction is:

h(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIm)
−1y

where k(x) is an m-dimensional vector, with the ith element equal to
K(x,xi)

• That is, the ith element has the similarity of the input to the ith instance

• The features are not needed for this step either!
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Logistic regression

• The output of a logistic regression predictor is:

hw(x) =
1

1 + ewTφ(x)+w0

• Again, we can define the weights in terms of support vectors: w =∑m
i=1αiφ(xi)

• The prediction can now be computed as:

h(x) =
1

1 + e
∑m

ı=1 αiK(xi,x)+w0

• αi are the new parameters (one per instance) and can be derived using
gradient descent
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Kernels

• A lot of current research has to do with defining new kernels functions,
suitable to particular tasks / kinds of input objects

• Many kernels are available:

– Information diffusion kernels (Lafferty and Lebanon, 2002)
– Diffusion kernels on graphs (Kondor and Jebara 2003)
– String kernels for text classification (Lodhi et al, 2002)
– String kernels for protein classification (e.g., Leslie et al, 2002)

... and others!

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 23



Example: String kernels

• Very important for DNA matching, text classification, ...

• Example: in DNA matching, we use a sliding window of length k over
the two strings that we want to compare

• The window is of a given size, and inside we can do various things:

– Count exact matches
– Weigh mismatches based on how bad they are
– Count certain markers, e.g. AGT

• The kernel is the sum of these similarities over the two sequences

• How do we prove this is a kernel?
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Establishing “kernelhood”

• Suppose someone hands you a function K. How do you know that it is
a kernel?

• More precisely, given a function K : Rn×Rn → R, under what conditions
can K(x, z) be written as a dot product φ(x) · φ(z) for some feature
mapping φ?

• We want a general recipe, which does not require explicitly defining φ
every time
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Kernel matrix

• Suppose we have an arbitrary set of input vectors x1,x2, . . .xm

• The kernel matrix (or Gram matrix) K corresponding to kernel function
K is an m×m matrix such that Kij = K(xi,xj) (notation is overloaded
on purpose).

• What properties does the kernel matrix K have?

• Claims:

1. K is symmetric
2. K is positive semidefinite

• Note that these claims are consistent with the intuition that K is a
“similarity” measure (and will be true regardless of the data)
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Proving the first claim

If K is a valid kernel, then the kernel matrix is symmetric

Kij = φ(xi) · φ(xj) = φ(xj) · φ(xi) = Kji

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 27



Proving the second claim

If K is a valid kernel, then the kernel matrix is positive semidefinite

Proof: Consider an arbitrary vector z

zTKz =
∑
i

∑
j

ziKijzj =
∑
i

∑
j

zi (φ(xi) · φ(xj)) zj

=
∑
i

∑
j

zi

(∑
k

φk(xi)φk(xj)

)
zj

=
∑
k

∑
i

∑
j

ziφk(xi)φk(xj)zj

=
∑
k

(∑
i

ziφk(xi)

)2

≥ 0
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Mercer’s theorem

• We have shown that if K is a kernel function, then for any data set,
the corresponding kernel matrix K defined such that Kij = K(xi,xj) is
symmetric and positive semidefinite
• Mercer’s theorem states that the reverse is also true:

Given a function K : Rn × Rn → R, K is a kernel if and only if, for
any data set, the corresponding kernel matrix is symmetric and positive
semidefinite
• The reverse direction of the proof is much harder (see e.g. Vapnik’s

book for details)
• This result gives us a way to check if a given function is a kernel, by

checking these two properties of its kernel matrix.
• Kernels can also be obtained by combining other kernels (see next

homework), or by learning from data
• Kernel learning may suffer from overfitting (kernel matrix close to

diagonal)
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Support Vector Regression

• In regression problems, so far we have been trying to minimize mean-
squared error: ∑

i

(yi − (w · xi + w0))
2

• In SVM regression, we will be interested instead in minimizing absolute
error: ∑

i

|yi − (w · xi + w0)|

• This is more robust to outliers than the squared loss

• But we cannot require that all points be approximated correctly
(overfitting!)
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Loss function for support vector regression

In order to allow for misclassifications in SVM regression (and have
robustness to noise), we use the ε-insensitive loss:

Jε =

m∑
i=1

Jε(xi), where

Jε(xi) =

{
0 if |yi − (w · xi + w0)| ≤ ε
|yi − (w · xi + w0)| − ε otherwise

!
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• Again, this is a quadratic programming problem

• It can be dualized

• Some of the data points will become support vectors

• It can be kernelized
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• Again, this is a quadratic programming problem

• It can be dualized

• Some of the data points will become support vectors

• It can be kernelized

1
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Solving SVM regression

• We use ideas similar to the soft margin classifiers

• We introduce slack variables, ξ+
i , ξ−i to account for errors outside the

tolerance area

• We need two kinds of variables to account for both positive and negative
errors
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The optimization problem

min 1
2‖w‖

2 + C
∑
i(ξ

+
i + ξ−i )

w.r.t. w, w0, ξ
+
i , ξ

−
i

s.t. yi − (w · xi + w0) ≤ ε+ ξ+
i

yi − (w · xi + w0) ≥ −ε− ξ−i
ξ+
i , ξ

−
i ≥ 0

• Like before, we can write the Lagrangian and solve the dual form of the
problem

• Kernels can be used as before to get non-linear functions
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Effect of ε
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Example: SV regression with Gaussian basis functions

• The red curve is the true function 
(which is not a polynomial)

• Regression function – Gaussians 
centred on data points

• Parameters are: C, epsilon, sigma
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Support vectors

epsilon = 0.01

• Validation set fit is a search 
over both C and sigma
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Example: SV regression with Gaussian basis functions

• The red curve is the true function 
(which is not a polynomial)

• Regression function – Gaussians 
centred on data points

• Parameters are: C, epsilon, sigma
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Support vectors
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• Validation set fit is a search 
over both C and sigma

epsilon = 0.5
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epsilon = 0.8

As epsilon increases:

• fit becomes looser

• less data points are support vectors

Loss functions for regression
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• As ε increases, the function is allowed to move away from the data
points, the number of support vectors decreases and the fit gets worse

2Zisserman course notes
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