Lecture 5: More on logistic regression. Second-order
methods. Kernels

e Logistic regression
e Regularization

e Kernelizing linear methods

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

Recall: Logistic regression

e Hypothesis is a logistic function of a linear combination of inputs:

1
Alx) = 1 + exp(w!x)

e \We interpret h(x) as P(y = 1|x)

e Optimizes the cross-entropy error function :

Jp(w) = — (Z yilog h(x;) + (1 — y;) log(1 — h(XJ))

using gradient descent (or ascent on the log likelihood of the data)

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

Maximization procedure: Gradient ascent

e First we compute the gradient of log L(w) wrt w

e The update rule is:

w < w+aVlog L(w W+Oéz xi=w+aX (y—y

where o € (0, 1) is a step-size or learning rate parameter

e If one uses features of the input, we have:
w—w+adl(y —9)

e The step size «v is a parameter for which we have to choose a “good”
value

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

Another algorithm for optimization

e Recall Newton's method for finding the zero of a function g : R — R
e At point w’, approximate the function by a straight line (its tangent)

e Solve the linear equation for where the tangent equals 0, and move the
parameter to this point:

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

Application to machine learning

e Suppose for simplicity that the error function J has only one parameter

e \We want to optimize J, so we can apply Newton’'s method to find the
zeros of J' = %J

e \We obtain the iteration:
i1 J’(wz)

w =W — —/—<

J”(’wi)

e Note that there is no step size parameter!

e This is a second-order method, because it requires computing the second
derivative

e But, if our error function is quadratic, this will find the global optimum
in one step!

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 5

Second-order methods: Multivariate setting

e |f we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives

of J:
0%J

Hi' _
J 6w18w3

e The inverse of the Hessian gives the “optimal” learning rates

e The weights are updated as:

ww— H 'W,J

e This is also called Newton-Raphson method for logistic regression, or
Fisher scoring

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 6

Which method is better?

e Newton's method usually requires significantly fewer iterations than
gradient descent

e Computing the Hessian requires a batch of data, so there is no natural
on-line algorithm

e Inverting the Hessian explicitly is expensive, but almost never necessary

e Computing the product of a Hessian with a vector can be done in linear
time (Pearlmutter, 1993), which helps also to compute the product of
the inverse Hessian with a vector without explicitly computing H

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 7

Newton-Raphson for logistic regression

e Leads to a nice algorithm called iterative recursive least squares

e [he Hessian has the form:
H=3®"R®

where R is the diagonal matrix of h(x;)(1 — h(x;)) (you can check that
this is the form of the second derivative.

e [he weight update becomes:

w <+ (P'R®)'®'R(®dw — R (dwW — y))

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

Regularization for logistic regression

e One can do regularization for logistic regression just like in the case of
linear regression

e Recall regularization makes a statement about the weights, so does not
affect the error function

e Eg: L- regularization will have the optimization criterions:

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 9

Probabilistic view of logistic regression
e Consider the additive noise model we discussed before:
Yi = hw(Xi) + €

where € are drawn iid from some distribution
o At first glance, log reg does not fit very well

e We will instead think of a latent variable ¢; such that:
Ui = hw(x;) + €
e Then the output is generated as:

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

10

Graphical model for logistic regression

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

11

Other versions of logistic regression

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

12

Linear regression with feature vectors revisited

e Find the weight vector w which minimizes the (regularized) error function:

T(w) = H(@w —y) (@w —y) + Sw'w

e Suppose instead of the closed-form solution, we just take the gradient
and rearrange the terms

e [he solution takes the form:

m

Z w ¢ Xi) — Yi)P(x;) = Zai¢(xi) =®"a

1=1

>/|b—*

where a is a vector of size m (number of instances) with a; =
1
—X(WTCb(Xi) — i)

e Main idea: use a instead of w as parameter vector

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 13

Re-writing the error function

e Instead of J(w) we have J(a):

1 1 A
J(a) = iaTé[)(I)TfI)@Ta —al®ddply + iny — §aT<I><I>Ta
e Denote PP = K
e Hence, we can re-write this as:
17 T 1 7 A r
J(a) = 52 KKa — a Ky—|—2y y + 5 Ka

e This is quadratic in a, and we can set the gradient to 0 and solve.

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

14

Dual-view regression

e By setting the gradient to 0 we get:

a=(K+M,,) 'y

e Note that this is similar to re-formulating a weight vector in terms of a

linear combination of instances

e Again, the feature mapping is not needed either to learn or to make

predictions!

e This approach is useful if the feature space is very large

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

15

Kernel functions
e Whenever a learning algorithm can be written in terms of dot-products,
it can be generalized to kernels.

e A kernel is any function K : R™ x R™ — R which corresponds to a dot
product for some feature mapping ¢:

K(x1,%2) = ¢(x1) - #(x2) for some ¢.

e Conversely, by choosing feature mapping ¢, we implicitly choose a kernel
function

e Recall that ¢(x1) - ¢(x2) = cos £(x1,x2) where £ denotes the angle
between the vectors, so a kernel function can be thought of as a notion
of similarity.

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 16

Example: Quadratic kernel

o Let K(x,2) = (x-2)°.
e Is this a kernel?

n n
K(x,z) = E T2 E Tizi | = g T2 T %5
i—1 j=1

i,je{1l...n}
=) (miwy) (2i)
i,je{l...n}
e Hence, it is a kernel, with feature mapping:
2 2 2
o(x) = (x], x1x2, ..., T1Tp, T2X1, Ty ..., Ty)

Feature vector includes all squares of elements and all cross terms.
e Note that computing ¢ takes O(n?) but computing K takes only O(n)!

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 17

Polynomial kernels

e More generally, K(x,z) = (x-z)?% is a kernel, for any positive integer d:

d

K(x,z) = ixzzz
i=1

e If we expanded the sum above in the obvious way, we get n? terms (i.e.
feature expansion)

e Terms are monomials (products of ;) with total power equal to d.

o |f we use the primal form of the SVM, each of these will have a weight
associated with it!

e Curse of dimensionality: it is very expensive both to optimize and to
predict with an SVM in primal form

e However, evaluating the dot-product of any two feature vectors can be
done using K in O(n)!

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 18

The “kernel trick”

e |f we work with the dual, we do not actually have to ever compute the
feature mapping ¢. We just have to compute the similarity K.

e |n our case, we kernelized linear regression, as we do not need to look at
features to compute the parameter vector, but only at dot-products of

features.

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 19

Some other (fairly generic) kernel functions
e K(x,z) = (1 +x-2)% — feature expansion has all monomial terms of
< d total power.
e Radial basis/Gaussian kernel:
K (x,z) = exp(—|x — z||*/20%)
The kernel has an infinite-dimensional feature expansion, but dot-

products can still be computed in O(n)!

e Sigmoidal kernel:

K(x,z) = tanh(c1x - z + ¢2)

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 20

Making predictions in the dual view
e For a new input x, the prediction is:
h(x) =w'¢(x) = a’ ®o(x) = k(x)" (K + AL,) "y
where k(x) is an m-dimensional vector, with the ith element equal to
K(x,x;)

e That is, the 7th element has the similarity of the input to the 7th instance

e The features are not needed for this step either!

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 21

Logistic regression

e The output of a logistic regression predictor is:

1

frw (x) = 1 + eW! ¢(x)+wo

e Again, we can define the weights in terms of support vectors: w =
D imy Qid(X;)

e [he prediction can now be computed as:

1
h(x) = |+ oy ks (o 0w

e «; are the new parameters (one per instance) and can be derived using
gradient descent

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 22

Kernels

e A lot of current research has to do with defining new kernels functions,
suitable to particular tasks / kinds of input objects

e Many kernels are available:

— Information diffusion kernels (Lafferty and Lebanon, 2002)

— Diffusion kernels on graphs (Kondor and Jebara 2003)

— String kernels for text classification (Lodhi et al, 2002)

— String kernels for protein classification (e.g., Leslie et al, 2002)

. and others!

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 23

Example: String kernels

e Very important for DNA matching, text classification, ...

e Example: in DNA matching, we use a sliding window of length k£ over
the two strings that we want to compare

e The window is of a given size, and inside we can do various things:

— Count exact matches
— Weigh mismatches based on how bad they are
— Count certain markers, e.g. AGT

e The kernel is the sum of these similarities over the two sequences

e How do we prove this is a kernel?

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 24

Establishing “kernelhood”

e Suppose someone hands you a function K. How do you know that it is
a kernel?

e More precisely, given a function K : R" xR™ — R, under what conditions
can K(x,z) be written as a dot product ¢(x) - ¢(z) for some feature
mapping ¢?

e We want a general recipe, which does not require explicitly defining ¢
every time

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 25

Kernel matrix

e Suppose we have an arbitrary set of input vectors x1,Xo, ... X,

e The kernel matrix (or Gram matrix) K corresponding to kernel function
K is an m x m matrix such that K;; = K (x;,x;) (notation is overloaded

on purpose).
e \What properties does the kernel matrix K have?
e Claims:

1. K Is symmetric
2. K is positive semidefinite

e Note that these claims are consistent with the intuition that K is a

“similarity” measure (and will be true regardless of the data)

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

26

Proving the first claim

If K is a valid kernel, then the kernel matrix is symmetric

Kij = ¢(x;) - 9(x5) = ¢(x5) - o(x5) = Ky

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

27

Proving the second claim

If K is a valid kernel, then the kernel matrix is positive semidefinite

Proof: Consider an arbitrary vector z

7z Kz = Z Z 2l 25 = Z Z < (¢(Xi) ' ¢(Xj)) <]

_ ZZ’Z" <Z ¢k(Xi)¢k(Xj)> Zj
— S:S:;:Ziﬁbk(xi)?bk(xj)’zj

= S:(.erﬂbk(xz‘)) >0

k

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

28

Mercer’'s theorem

e We have shown that if K is a kernel function, then for any data set,
the corresponding kernel matrix K defined such that K;; = K (x;,x;) is
symmetric and positive semidefinite

e Mercer's theorem states that the reverse is also true:

Given a function K : R" x R" — R, K is a kernel if and only if, for
any data set, the corresponding kernel matrix is symmetric and positive
semidefinite

e The reverse direction of the proof is much harder (see e.g. Vapnik's
book for details)

e This result gives us a way to check if a given function is a kernel, by
checking these two properties of its kernel matrix.

e Kernels can also be obtained by combining other kernels (see next
homework), or by learning from data

e Kernel learning may suffer from overfitting (kernel matrix close to
diagonal)

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 29

Support Vector Regression

e In regression problems, so far we have been trying to minimize mean-

squared error:

Z(yi — (W - x; 4 wp))”

1

e In SVM regression, we will be interested instead in minimizing absolute

Eerror:

D1y — (W xi + wo)

e This is more robust to outliers than the squared loss

e But we cannot require that all points be approximated correctly

(overfitting!)

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

30

Loss function for support vector regression

In order to allow for misclassifications in SVM regression (and have
robustness to noise), we use the e-insensitive loss:

m

J. = Z Je(xi), where

1=1

0 if lyi — (w-x3+wp)| <e
ly; — (W - x3+wp)| —e otherwise

I = {

cost is zero inside epsilon “tube”

f(@)+e
f(=)
f(z)—e

square
loss

Ve(r)

v
=

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 31

Solving SVM regression

e We use ideas similar to the soft margin classifiers

e We introduce slack variables, &, & to account for errors outside the
tolerance area

e We need two kinds of variables to account for both positive and negative
errors

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 32

The optimization problem

min w2+ C Y6 +¢)
w.r.t. w,wo,fj,fi_
st. vy, — (W-X; +wy) < e+§i+
yi—(w-xi+w0) Z —E—fi_
56 >0

e Like before, we can write the Lagrangian and solve the dual form of the

problem
e Kernels can be used as before to get non-linear functions

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016 33

Effect of ¢

1.5

O Sample points
Validation set fit

+ Support vectors H

0.5}

o O Sample points 0
— Ideal fit
-0.5}F
1t
(=]
(<]
15 L L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
'1‘50 072 of4 0?6 ofs 1 1?2 1.4 epSIIOn - 001

epsilon = 0.8

O Sample points
Validation set fit
-+ Support vectors

0

0.1

0.2

03 04

05 0.6

0.7 08 09 1

e As € increases, the function is allowed to move away from the data
points, the number of support vectors decreases and the fit gets worse

2Zisserman course notes

COMP-652 and ECSE-608, Lecture 5 - January 26, 2016

34

2

