Lecture 2: Overfitting. Regularization

- Generalizing regression
- Overfitting
- Cross-validation
- L2 and L1 regularization for linear estimators
- A Bayesian interpretation of regularization
- Bias-variance trade-off

Recall: Overfitting

- A general, HUGELY IMPORTANT problem for all machine learning algorithms
- We can find a hypothesis that predicts perfectly the training data but does not generalize well to new data
- E.g., a lookup table!

Another overfitting example

- The higher the degree of the polynomial M, the more degrees of freedom, and the more capacity to "overfit" the training data
- Typical overfitting means that error on the training data is very low, but error on new instances is high

Overfitting more formally

- Assume that the data is drawn from some fixed, unknown probability distribution
- Every hypothesis has a "true" error $J^{*}(h)$, which is the expected error when data is drawn from the distribution.
- Because we do not have all the data, we measure the error on the training set $J_{D}(h)$
- Suppose we compare hypotheses h_{1} and h_{2} on the training set, and $J_{D}\left(h_{1}\right)<J_{D}\left(h_{2}\right)$
- If h_{2} is "truly" better, i.e. $J^{*}\left(h_{2}\right)<J^{*}\left(h_{1}\right)$, our algorithm is overfitting.
- We need theoretical and empirical methods to guard against it!

Typical overfitting plot

- The training error decreases with the degree of the polynomial M, i.e. the complexity of the hypothesis
- The testing error, measured on independent data, decreases at first, then starts increasing
- Cross-validation helps us:
- Find a good hypothesis class (M in our case), using a validation set of data
- Report unbiased results, using a test set, untouched during either parameter training or validation

Cross-validation

- A general procedure for estimating the true error of a predictor
- The data is split into two subsets:
- A training and validation set used only to find the right predictor
- A test set used to report the prediction error of the algorithm
- These sets must be disjoint!
- The process is repeated several times, and the results are averaged to provide error estimates.

Example: Polynomial regression

Leave-one-out cross-validation

1. For each order of polynomial, d :
(a) Repeat the following procedure m times:
i. Leave out i th instance from the training set, to estimate the true prediction error; we will put it in a validation set
ii. Use all the other instances to find best parameter vector, $\mathbf{w}_{d, i}$
iii. Measure the error in predicting the label on the instance left out, for the $\mathbf{w}_{d, i}$ parameter vector; call this $J_{d, i}$
iv. This is a (mostly) unbiased estimate of the true prediction error
(b) Compute the average of the estimated errors: $J_{d}=\frac{1}{m} \sum_{i=1}^{m} J_{d, i}$
2. Choose the d with lowest average estimated error: $d^{*}=\arg \min _{d} J(d)$

Estimating true error for $d=1$

Iter	$D_{\text {train }}$	$D_{\text {valid }}$	Error $_{\text {train }}$	Error $_{\text {valid }}\left(J_{1, i}\right)$
1	$D-\{(0.86,2.49)\}$	(0.86, 2.49)	0.4928	0.0044
2	$D-\{(0.08,0.83)\}$	(0.09, 0.83)	0.1995	0.1869
3	$D-\{(-0.85,-0.25)\}$	$(-0.85,-0.25)$	0.3461	0.0053
4	$D-\{(0.87,3.10)\}$	(0.87, 3.10)	0.3887	0.8681
5	$D-\{(-0.44,0.87)\}$	($-0.44,0.87$)	0.2128	0.3439
6	$D-\{(-0.43,0.02)\}$	(-0.43, 0.02)	0.1996	0.1567
7	$D-\{(-1.10,-0.12)\}$	$(-1.10,-0.12)$	0.5707	0.7205
8	$D-\{(0.40,1.81)\}$	(0.40, 1.81)	0.2661	0.0203
9	$D-\{(-0.96,-0.83)\}$	$(-0.96,-0.83)$	0.3604	0.2033
10	$D-\{(0.17,0.43)\}$	(0.17, 0.43)	0.2138	1.0490
		mea	0.2188	0.3558

Leave-one-out cross-validation results

d	Error $_{\text {train }}$	Error $_{\text {valid }}\left(J_{d}\right)$
1	0.2188	0.3558
2	0.1504	0.3095
3	0.1384	0.4764
4	0.1259	1.1770
5	0.0742	1.2828
6	0.0598	1.3896
7	0.0458	38.819
8	0.0000	6097.5
9	0.0000	6097.5

- Typical overfitting behavior: as d increases, the training error decreases, but the validation error decreases, then starts increasing again
- Optimal choice: $d=2$. Overfitting for $d>2$

Estimating both hypothesis class and true error

- Suppose we want to compare polynomial regression with some other algorithm
- We chose the hypothesis class (i.e. the degree of the polynomial, d^{*}) based on the estimates J_{d}
- Hence $J_{d^{*}}$ is not unbiased - our procedure was aimed at optimizing it
- If we want to have both a hypothesis class and an unbiased error estimate, we need to tweak the leave-one-out procedure a bit

Cross-validation with validation and testing sets

1. For each example j :
(a) Create a test set consisting just of the j th example, $D_{j}=\left\{\left(\mathbf{x}_{j}, y_{j}\right)\right\}$ and a training and validation set $\bar{D}_{j}=D-\left\{\left(\mathbf{x}_{j}, y_{j}\right)\right\}$
(b) Use the leave-one-out procedure from above on D_{j} (once!) to find a hypothesis, h_{j}^{*}

- Note that this will split the data internally, in order to both train and validate!
- Typically, only one such split is used, rather than all possible splits
(c) Evaluate the error of h_{j}^{*} on D_{j} (call it $J\left(h_{j}^{*}\right)$)

2. Report the average of the $J\left(h_{j}^{*}\right)$, as a measure of performance of the whole algorithm

- Note that at this point we do not have one predictor, but several!
- Several methods can then be used to come up with just one predictor (more on this later)

Summary of leave-one-out cross-validation

- A very easy to implement algorithm
- Provides a great estimate of the true error of a predictor
- It can indicate problematic examples in a data set (when using multiple algorithms)
- Computational cost scales with the number of instances (examples), so it can be prohibitive, especially if finding the best predictor is expensive
- We do not obtain one predictor, but many!
- Alternative: k-fold cross-validation: split the data set into k parts, then proceed as above.

Regularization

- Remember the intuition: complicated hypotheses lead to overfitting
- Idea: change the error function to penalize hypothesis complexity:

$$
J(\mathbf{w})=J_{D}(\mathbf{w})+\lambda J_{p e n}(\mathbf{w})
$$

This is called regularization in machine learning and shrinkage in statistics

- λ is called regularization coefficient and controls how much we value fitting the data well, vs. a simple hypothesis

Regularization for linear models

- A squared penalty on the weights would make the math work nicely in our case:

$$
\frac{1}{2}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{y})^{T}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{y})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}
$$

- This is also known as L_{2} regularization, or weight decay in neural networks
- By re-grouping terms, we get:

$$
J_{D}(\mathbf{w})=\frac{1}{2}\left(\mathbf{w}^{T}\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}+\lambda \mathbf{I}\right) \mathbf{w}-\mathbf{w}^{T} \boldsymbol{\Phi}^{T} \mathbf{y}-\mathbf{y}^{T} \boldsymbol{\Phi} \mathbf{w}+\mathbf{y}^{T} \mathbf{y}\right)
$$

- Optimal solution (obtained by solving $\nabla_{\mathrm{w}} J_{D}(\mathbf{w})=0$)

$$
\mathbf{w}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}+\lambda I\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{y}
$$

What L_{2} regularization does

$$
\arg \min _{\mathbf{w}} \frac{1}{2}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{y})^{T}(\boldsymbol{\Phi} \mathbf{w}-\mathbf{y})+\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}+\lambda I\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{y}
$$

- If $\lambda=0$, the solution is the same as in regular least-squares linear regression
- If $\lambda \rightarrow \infty$, the solution $\mathbf{w} \rightarrow 0$
- Positive λ will cause the magnitude of the weights to be smaller than in the usual linear solution
- This is also called ridge regression, and it is a special case of Tikhonov regularization (more on that later)
- A different view of regularization: we want to optimize the error while keeping the L_{2} norm of the weights, $\mathbf{w}^{T} \mathbf{w}$, bounded.

Detour: Constrained optimization

Suppose we want to find

$$
\begin{gathered}
\min _{\mathbf{w}} f(\mathbf{w}) \\
\text { such that } g(\mathbf{w})=0
\end{gathered}
$$

Detour: Lagrange multipliers

- ∇g has to be orthogonal to the constraint surface (red curve)
- At the optimum, ∇f and ∇g have to be parallel (in same or opposite direction)
- Hence, there must exist some $\lambda \in \mathbb{R}$ such that $\nabla f+\lambda \nabla g=0$
- Lagrangian function: $L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})$
λ is called Lagrange multiplier
- We obtain the solution to our optimization problem by setting both $\nabla_{\mathrm{x}} L=0$ and $\frac{\partial L}{\partial \lambda}=0$

Detour: Inequality constraints

- Suppose we want to find

- In the interior $(g(\mathbf{x}>0))$ - simply find $\nabla f(\mathbf{x})=0$
- On the boundary $(g(x=0))$ - same situation as before, but the sign matters this time
For minimization, we want ∇f pointing in the same direction as ∇g

Detour: KKT conditions

- Based on the previous observations, let the Lagrangian be $L(\mathbf{x}, \lambda)=$ $f(\mathbf{x})-\lambda g(\mathbf{x})$
- We minimize L wrt \mathbf{x} subject to the following constraints:

$$
\begin{aligned}
\lambda & \geq 0 \\
g(\mathbf{x}) & \geq 0 \\
\lambda g(\mathbf{x}) & =0
\end{aligned}
$$

- These are called Karush-Kuhn-Tucker (KKT) conditions

L_{2} Regularization for linear models revisited

- Optimization problem: minimize error while keeping norm of the weights bounded

$$
\begin{aligned}
\min _{\mathbf{w}} J_{D}(\mathbf{w}) & =\min _{\mathbf{w}}(\mathbf{\Phi} \mathbf{w}-\mathbf{y})^{T}(\mathbf{\Phi} \mathbf{w}-\mathbf{y}) \\
\text { such that } \mathbf{w}^{T} \mathbf{w} & \leq \eta
\end{aligned}
$$

- The Lagrangian is:

$$
L(\mathbf{w}, \lambda)=J_{D}(\mathbf{w})-\lambda\left(\eta-\mathbf{w}^{T} \mathbf{w}\right)=(\mathbf{\Phi} \mathbf{w}-\mathbf{y})^{T}(\mathbf{\Phi} \mathbf{w}-\mathbf{y})+\lambda \mathbf{w}^{T} \mathbf{w}-\lambda \eta
$$

- For a fixed λ, and $\eta=\lambda^{-1}$, the best \mathbf{w} is the same as obtained by weight decay

Visualizing regularization (2 parameters)

$$
\mathbf{w}^{*}=\left(\boldsymbol{\Phi}^{T} \mathbf{\Phi}+\lambda I\right)^{-1} \mathbf{\Phi} \mathbf{y}
$$

Pros and cons of L_{2} regularization

- If λ is at a "good" value, regularization helps to avoid overfitting
- Choosing λ may be hard: cross-validation is often used
- If there are irrelevant features in the input (i.e. features that do not affect the output), L_{2} will give them small, but non-zero weights.
- Ideally, irrelevant input should have weights exactly equal to 0 .

L_{1} Regularization for linear models

- Instead of requiring the L_{2} norm of the weight vector to be bounded, make the requirement on the L_{1} norm:

$$
\begin{aligned}
\min _{\mathbf{w}} J_{D}(\mathbf{w}) & =\min _{\mathbf{w}}(\mathbf{\Phi} \mathbf{w}-\mathbf{y})^{T}(\mathbf{\Phi} \mathbf{w}-\mathbf{y}) \\
\text { such that } \sum_{i=1}^{n}\left|w_{i}\right| & \leq \eta
\end{aligned}
$$

- This yields an algorithm called Lasso (Tibshirani, 1996)

Solving L_{1} regularization

- The optimization problem is a quadratic program
- There is one constraint for each possible sign of the weights $\left(2^{n}\right.$ constraints for n weights)
- For example, with two weights:

$$
\begin{aligned}
\min _{w_{1}, w_{2}} & \sum_{j=1}^{m}\left(y_{j}-w_{1} x_{1}-w_{2} x_{2}\right)^{2} \\
\text { such that } w_{1}+w_{2} & \leq \eta \\
w_{1}-w_{2} & \leq \eta \\
-w_{1}+w_{2} & \leq \eta \\
-w_{1}-w_{2} & \leq \eta
\end{aligned}
$$

- Solving this program directly can be done for problems with a small number of inputs

Visualizing L_{1} regularization

- If λ is big enough, the circle is very likely to intersect the diamond at one of the corners
- This makes L_{1} regularization much more likely to make some weights exactly 0

Pros and cons of L_{1} regularization

- If there are irrelevant input features, Lasso is likely to make their weights 0 , while L_{2} is likely to just make all weights small
- Lasso is biased towards providing sparse solutions in general
- Lasso optimization is computationally more expensive than L_{2}
- More efficient solution methods have to be used for large numbers of inputs (e.g. least-angle regression, 2003).
- L_{1} methods of various types are very popular

Example of L1 vs L2 effect

- Note the sparsity in the coefficients induces by L_{1}
- Lasso is an efficient way of performing the L_{1} optimization

Bayesian view of regularization

- Start with a prior distribution over hypotheses
- As data comes in, compute a posterior distribution
- We often work with conjugate priors, which means that when combining the prior with the likelihood of the data, one obtains the posterior in the same form as the prior
- Regularization can be obtained from particular types of prior (usually, priors that put more probability on simple hypotheses)
- E.g. L_{2} regularization can be obtained using a circular Gaussian prior for the weights, and the posterior will also be Gaussian
- E.g. L_{1} regularization uses double-exponential prior (see (Tibshirani, 1996))

Bayesian view of regularization

- Prior is round Gaussian
- Posterior will be skewed by the data

What does the Bayesian view give us?

- Circles are data points
- Green is the true function
- Red lines on right are drawn from the posterior distribution

What does the Bayesian view give us?

- Functions drawn from the posterior can be very different
- Uncertainty decreases where there are data points

What does the Bayesian view give us?

- Uncertainty estimates, i.e. how sure we are of the value of the function
- These can be used to guide active learning: ask about inputs for which the uncertainty in the value of the function is very high
- In the limit, Bayesian and maximum likelihood learning converge to the same answer
- In the short term, one needs a good prior to get good estimates of the parameters
- Sometimes the prior is overwhelmed by the data likelihood too early.
- Using the Bayesian approach does NOT eliminate the need to do crossvalidation in general
- More on this later...

The anatomy of the error of an estimator

- Suppose we have examples $\langle\mathbf{x}, y\rangle$ where $y=f(\mathbf{x})+\epsilon$ and ϵ is Gaussian noise with zero mean and standard deviation σ
- We fit a linear hypothesis $h(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}$, such as to minimize sum-squared error over the training data:

$$
\sum_{i=1}^{m}\left(y_{i}-h\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Because of the hypothesis class that we chose (hypotheses linear in the parameters) for some target functions f we will have a systematic prediction error
- Even if f were truly from the hypothesis class we picked, depending on the data set we have, the parameters \mathbf{w} that we find may be different; this variability due to the specific data set on hand is a different source of error

Bias-variance analysis

- Given a new data point \mathbf{x}, what is the expected prediction error?
- Assume that the data points are drawn independently and identically distributed (i.i.d.) from a unique underlying probability distribution $P(\langle\mathbf{x}, y\rangle)=P(\mathbf{x}) P(y \mid \mathbf{x})$
- The goal of the analysis is to compute, for an arbitrary given point \mathbf{x},

$$
E_{P}\left[(y-h(\mathbf{x}))^{2} \mid \mathbf{x}\right]
$$

where y is the value of \mathbf{x} in a data set, and the expectation is over all training sets of a given size, drawn according to P

- For a given hypothesis class, we can also compute the true error, which is the expected error over the input distribution:

$$
\sum_{\mathbf{x}} E_{P}\left[(y-h(\mathbf{x}))^{2} \mid \mathbf{x}\right] P(\mathbf{x})
$$

(if x continuous, sum becomes integral with appropriate conditions).

- We will decompose this expectation into three components

Recall: Statistics 101

- Let X be a random variable with possible values $x_{i}, i=1 \ldots n$ and with probability distribution $P(X)$
- The expected value or mean of X is:

$$
E[X]=\sum_{i=1}^{n} x_{i} P\left(x_{i}\right)
$$

- If X is continuous, roughly speaking, the sum is replaced by an integral, and the distribution by a density function
- The variance of X is:

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[(X-E(X))^{2}\right] \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

The variance lemma

$$
\begin{aligned}
\operatorname{Var}[X] & =E\left[(X-E[X])^{2}\right] \\
& =\sum_{i=1}^{n}\left(x_{i}-E[X]\right)^{2} P\left(x_{i}\right) \\
& =\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} E[X]+(E[X])^{2}\right) P\left(x_{i}\right) \\
& =\sum_{i=1}^{n} x_{i}^{2} P\left(x_{i}\right)-2 E[X] \sum_{i=1}^{n} x_{i} P\left(x_{i}\right)+(E[X])^{2} \sum_{i=1}^{n} P\left(x_{i}\right) \\
& =E\left[X^{2}\right]-2 E[X] E[X]+(E[X])^{2} \cdot 1 \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

We will use the form:

$$
E\left[X^{2}\right]=(E[X])^{2}+\operatorname{Var}[X]
$$

Bias-variance decomposition

- Simple algebra:

$$
\begin{aligned}
E_{P}\left[(y-h(\mathbf{x}))^{2} \mid \mathbf{x}\right] & =E_{P}\left[(h(\mathbf{x}))^{2}-2 y h(\mathbf{x})+y^{2} \mid \mathbf{x}\right] \\
& =E_{P}\left[(h(\mathbf{x}))^{2} \mid \mathbf{x}\right]+E_{P}\left[y^{2} \mid \mathbf{x}\right]-2 E_{P}[y \mid \mathbf{x}] E_{P}[h(\mathbf{x}) \mid \mathbf{x}]
\end{aligned}
$$

- Let $\bar{h}(\mathbf{x})=E_{P}[h(\mathbf{x}) \mid \mathbf{x}]$ denote the mean prediction of the hypothesis at \mathbf{x}, when h is trained with data drawn from P
- For the first term, using the variance lemma, we have:

$$
E_{P}\left[(h(\mathbf{x}))^{2} \mid \mathbf{x}\right]=E_{P}\left[(h(\mathbf{x})-\bar{h}(\mathbf{x}))^{2} \mid \mathbf{x}\right]+(\bar{h}(\mathbf{x}))^{2}
$$

- Note that $E_{P}[y \mid \mathbf{x}]=E_{P}[f(\mathbf{x})+\epsilon \mid \mathbf{x}]=f(\mathbf{x})$ (because of linearity of expectation and the assumption on $\epsilon \sim \mathcal{N}(0, \sigma))$
- For the second term, using the variance lemma, we have:

$$
E\left[y^{2} \mid \mathbf{x}\right]=E\left[(y-f(\mathbf{x}))^{2} \mid \mathbf{x}\right]+(f(\mathbf{x}))^{2}
$$

Bias-variance decomposition (2)

- Putting everything together, we have:

$$
\begin{aligned}
E_{P}\left[(y-h(\mathbf{x}))^{2} \mid \mathbf{x}\right] & =E_{P}\left[(h(\mathbf{x})-\bar{h}(\mathbf{x}))^{2} \mid \mathbf{x}\right]+(\bar{h}(\mathbf{x}))^{2}-2 f(\mathbf{x}) \bar{h}(\mathbf{x}) \\
& +E_{P}\left[(y-f(\mathbf{x}))^{2} \mid \mathbf{x}\right]+(f(\mathbf{x}))^{2} \\
& =E_{P}\left[(h(\mathbf{x})-\bar{h}(\mathbf{x}))^{2} \mid \mathbf{x}\right]+(f(\mathbf{x})-\bar{h}(\mathbf{x}))^{2} \\
& +E\left[(y-f(\mathbf{x}))^{2} \mid \mathbf{x}\right]
\end{aligned}
$$

- The first term, $E_{P}\left[(h(\mathbf{x})-\bar{h}(\mathbf{x}))^{2} \mid \mathbf{x}\right]$, is the variance of the hypothesis h at \mathbf{x}, when trained with finite data sets sampled randomly from P
- The second term, $(f(\mathbf{x})-\bar{h}(\mathbf{x}))^{2}$, is the squared bias (or systematic error) which is associated with the class of hypotheses we are considering
- The last term, $E\left[(y-f(\mathbf{x}))^{2} \mid \mathbf{x}\right]$ is the noise, which is due to the problem at hand, and cannot be avoided

Error decomposition

- The bias-variance sum approximates well the test error over a set of 1000 points
- x-axis measures the hypothesis complexity (decreasing left-to-right)
- Simple hypotheses usually have high bias (bias will be high at many points, so it will likely be high for many possible input distributions)
- Complex hypotheses have high variance: the hypothesis is very dependent on the data set on which it was trained.

Bias-variance trade-off

- Typically, bias comes from not having good hypotheses in the considered class
- Variance results from the hypothesis class containing "too many" hypotheses
- MLE estimation is typically unbiased, but has high variance
- Bayesian estimation is biased, but typically has lower variance
- Hence, we are faced with a trade-off: choose a more expressive class of hypotheses, which will generate higher variance, or a less expressive class, which will generate higher bias
- Making the trade-off has to depend on the amount of data available to fit the parameters (data usually mitigates the variance problem)

More on overfitting

- Overfitting depends on the amount of data, relative to the complexity of the hypothesis
- With more data, we can explore more complex hypotheses spaces, and still find a good solution

