Lecture 2: Overfitting. Regularization

- Generalizing regression
- Overfitting
- Cross-validation
- L2 and L1 regularization for linear estimators
- A Bayesian interpretation of regularization
- Bias-variance trade-off

Recall: Overfitting

- A general, <u>HUGELY IMPORTANT</u> problem for all machine learning algorithms
- We can find a hypothesis that predicts perfectly the training data but *does not generalize* well to new data
- E.g., a lookup table!

Another overfitting example

- The higher the degree of the polynomial *M*, the more degrees of freedom, and the more capacity to "overfit" the training data
- Typical overfitting means that error on the training data is very low, but error on new instances is high

Overfitting more formally

- Assume that the data is drawn from some fixed, unknown probability distribution
- Every hypothesis has a "true" error $J^*(h)$, which is the expected error when data is drawn from the distribution.
- Because we do not have all the data, we measure the error on the training set ${\cal J}_{\cal D}(h)$
- Suppose we compare hypotheses h_1 and h_2 on the training set, and $J_D(h_1) < J_D(h_2)$
- If h_2 is "truly" better, i.e. $J^*(h_2) < J^*(h_1)$, our algorithm is overfitting.
- We need theoretical and empirical methods to guard against it!

Typical overfitting plot

- The training error decreases with the degree of the polynomial *M*, i.e. *the complexity of the hypothesis*
- The testing error, measured on independent data, decreases at first, then starts increasing
- Cross-validation helps us:
 - Find a good hypothesis class (M in our case), using a *validation set* of data
 - Report unbiased results, using a *test set*, untouched during either parameter training or validation

Cross-validation

- A general procedure for estimating the true error of a predictor
- The data is split into two subsets:
 - A *training and validation set* used only to find the right predictor
 - A *test set* used to report the prediction error of the algorithm
- These sets *must be disjoint*!
- The process is repeated several times, and the results are averaged to provide error estimates.

Example: Polynomial regression

Leave-one-out cross-validation

- 1. For each order of polynomial, d:
 - (a) Repeat the following procedure m times:
 - i. Leave out *ith instance* from the training set, to estimate the true prediction error; we will put it in a *validation set*
 - ii. Use all the other instances to find best parameter vector, $\mathbf{w}_{d,i}$
 - iii. Measure the error in predicting the label on the instance left out, for the $\mathbf{w}_{d,i}$ parameter vector; call this $J_{d,i}$
 - iv. This is a (mostly) unbiased estimate of the true prediction error
 - (b) Compute the average of the estimated errors: $J_d = \frac{1}{m} \sum_{i=1}^m J_{d,i}$
- 2. Choose the d with lowest average estimated error: $d^* = \arg \min_d J(d)$

Estimating true error for d = 1

 $D = \{(0.86, 2.49), (0.09, 0.83), (-0.85, -0.25), (0.87, 3.10), (-0.44, 0.87), (-0.43, 0.02), (-1.10, -0.12), (0.40, 1.81), (-0.96, -0.83), (0.17, 0.43)\}.$

lter	D_{train}	D_{valid}	Error _{train}	Error _{valid} $(J_{1,i})$
1	$D - \{(0.86, 2.49)\}$	(0.86, 2.49)	0.4928	0.0044
2	$D - \{(0.08, 0.83)\}$	(0.09, 0.83)	0.1995	0.1869
3	$D - \{(-0.85, -0.25)\}$	(-0.85, -0.25)	0.3461	0.0053
4	$D - \{(0.87, 3.10)\}$	(0.87, 3.10)	0.3887	0.8681
5	$D - \{(-0.44, 0.87)\}$	(-0.44, 0.87)	0.2128	0.3439
6	$D - \{(-0.43, 0.02)\}$	(-0.43, 0.02)	0.1996	0.1567
7	$D - \{(-1.10, -0.12)\}$	(-1.10, -0.12)	0.5707	0.7205
8	$D - \{(0.40, 1.81)\}$	(0.40, 1.81)	0.2661	0.0203
9	$D - \{(-0.96, -0.83)\}$	(-0.96, -0.83)	0.3604	0.2033
10	$D - \{(0.17, 0.43)\}$	(0.17, 0.43)	0.2138	1.0490
		mean:	0.2188	0.3558

Leave-one-out cross-validation results

Error _{train}	$Error_{valid}(J_d)$
0.2188	0.3558
0.1504	0.3095
0.1384	0.4764
0.1259	1.1770
0.0742	1.2828
0.0598	1.3896
0.0458	38.819
0.0000	6097.5
0.0000	6097.5
	Error _{train} 0.2188 0.1504 0.1384 0.1259 0.0742 0.0598 0.0458 0.0000 0.0000

- Typical overfitting behavior: as d increases, the training error decreases, but the validation error decreases, then starts increasing again
- Optimal choice: d = 2. Overfitting for d > 2

Estimating both hypothesis class and true error

- Suppose we want to compare polynomial regression with some other algorithm
- We chose the hypothesis class (i.e. the degree of the polynomial, d^*) based on the estimates J_d
- Hence J_{d^*} is *not* unbiased our procedure was aimed at optimizing it
- If we want to have both a hypothesis class *and* an unbiased error estimate, we need to tweak the leave-one-out procedure a bit

Cross-validation with validation and testing sets

- 1. For each example j:
 - (a) Create a *test set* consisting just of the *j*th example, $D_j = \{(\mathbf{x}_j, y_j)\}$ and a *training and validation set* $\overline{D}_j = D - \{(\mathbf{x}_j, y_j)\}$
 - (b) Use the leave-one-out procedure from above on D_j (once!) to find a hypothesis, h_i^*
 - Note that this will split the data internally, in order to both train and validate!
 - Typically, only one such split is used, rather than all possible splits
 - (c) Evaluate the error of h_j^* on D_j (call it $J(h_j^*)$)
- 2. Report the average of the $J(h_j^*)$, as a measure of performance of the whole algorithm
- Note that at this point we do not have one predictor, but several!
- Several methods can then be used to come up with just one predictor (more on this later)

Summary of leave-one-out cross-validation

- A very easy to implement algorithm
- Provides a great estimate of the true error of a predictor
- It can indicate problematic examples in a data set (when using multiple algorithms)
- Computational cost scales with the number of instances (examples), so it can be prohibitive, especially if finding the best predictor is expensive
- We do not obtain one predictor, but many!
- Alternative: k-fold cross-validation: split the data set into k parts, then proceed as above.

Regularization

- Remember the intuition: complicated hypotheses lead to overfitting
- Idea: change the error function to *penalize hypothesis complexity*:

$$J(\mathbf{w}) = J_D(\mathbf{w}) + \lambda J_{pen}(\mathbf{w})$$

This is called *regularization* in machine learning and *shrinkage* in statistics

• λ is called *regularization coefficient* and controls how much we value fitting the data well, vs. a simple hypothesis

Regularization for linear models

 A squared penalty on the weights would make the math work nicely in our case:

$$\frac{1}{2}(\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T(\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$$

- This is also known as L_2 regularization, or weight decay in neural networks
- By re-grouping terms, we get:

$$J_D(\mathbf{w}) = \frac{1}{2} (\mathbf{w}^T (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}) \mathbf{w} - \mathbf{w}^T \mathbf{\Phi}^T \mathbf{y} - \mathbf{y}^T \mathbf{\Phi} \mathbf{w} + \mathbf{y}^T \mathbf{y})$$

• Optimal solution (obtained by solving $\nabla_{\mathbf{w}} J_D(\mathbf{w}) = 0$)

$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

What L_2 regularization does

$$\arg\min_{\mathbf{w}} \frac{1}{2} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

- $\bullet~{\rm If}~\lambda=0,$ the solution is the same as in regular least-squares linear regression
- If $\lambda \to \infty$, the solution $\mathbf{w} \to 0$
- Positive λ will cause the magnitude of the weights to be smaller than in the usual linear solution
- This is also called *ridge regression*, and it is a special case of Tikhonov regularization (more on that later)
- A different view of regularization: we want to optimize the error while keeping the L_2 norm of the weights, $\mathbf{w}^T \mathbf{w}$, bounded.

Detour: Constrained optimization

Suppose we want to find

Detour: Lagrange multipliers

- ∇g has to be orthogonal to the constraint surface (red curve)
- At the optimum, ∇f and ∇g have to be parallel (in same or opposite direction)
- Hence, there must exist some $\lambda \in \mathbb{R}$ such that $\nabla f + \lambda \nabla g = 0$
- Lagrangian function: $L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$ λ is called Lagrange multiplier
- We obtain the solution to our optimization problem by setting both $\nabla_{\bf x}L=0$ and $\frac{\partial L}{\partial\lambda}=0$

Detour: Inequality constraints

• Suppose we want to find

- In the interior $(g(\mathbf{x} > 0))$ simply find $\nabla f(\mathbf{x}) = 0$
- On the boundary $(g(\mathbf{x} = 0))$ same situation as before, but the sign matters this time

For minimization, we want ∇f pointing in the same direction as ∇g

Detour: KKT conditions

- Based on the previous observations, let the Lagrangian be $L({\bf x},\lambda)=f({\bf x})-\lambda g({\bf x})$
- We minimize L wrt x subject to the following constraints:

$$egin{array}{ccc} \lambda &\geq & 0 \ g(\mathbf{x}) &\geq & 0 \ \lambda g(\mathbf{x}) &= & 0 \end{array}$$

• These are called *Karush-Kuhn-Tucker* (*KKT*) conditions

L_2 Regularization for linear models revisited

• Optimization problem: minimize error while keeping norm of the weights bounded

$$\min_{\mathbf{w}} J_D(\mathbf{w}) = \min_{\mathbf{w}} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{y})$$

such that $\mathbf{w}^T \mathbf{w} \leq \eta$

• The Lagrangian is:

$$L(\mathbf{w},\lambda) = J_D(\mathbf{w}) - \lambda(\eta - \mathbf{w}^T \mathbf{w}) = (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}^T \mathbf{w} - \lambda \eta$$

• For a fixed $\lambda,$ and $\eta=\lambda^{-1},$ the best ${\bf w}$ is the same as obtained by weight decay

$$\mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda I)^{-1} \mathbf{\Phi} \mathbf{y}$$

Pros and cons of L_2 regularization

- If λ is at a "good" value, regularization helps to avoid overfitting
- Choosing λ may be hard: cross-validation is often used
- If there are irrelevant features in the input (i.e. features that do not affect the output), L_2 will give them small, but non-zero weights.
- Ideally, irrelevant input should have weights exactly equal to 0.

L_1 Regularization for linear models

• Instead of requiring the L_2 norm of the weight vector to be bounded, make the requirement on the L_1 norm:

$$\min_{\mathbf{w}} J_D(\mathbf{w}) = \min_{\mathbf{w}} (\mathbf{\Phi}\mathbf{w} - \mathbf{y})^T (\mathbf{\Phi}\mathbf{w} - \mathbf{y})$$

such that $\sum_{i=1}^n |w_i| \leq \eta$

• This yields an algorithm called Lasso (Tibshirani, 1996)

Solving L_1 regularization

- The optimization problem is a quadratic program
- There is one constraint for each possible sign of the weights $(2^n \text{ constraints for } n \text{ weights})$
- For example, with two weights:

m

 Solving this program directly can be done for problems with a small number of inputs

- If λ is big enough, the circle is very likely to intersect the diamond at one of the corners
- This makes L_1 regularization much more likely to make some weights *exactly* 0

Pros and cons of L_1 regularization

- If there are irrelevant input features, Lasso is likely to make their weights 0, while L_2 is likely to just make all weights small
- Lasso is biased towards providing *sparse solutions* in general
- Lasso optimization is computationally more expensive than L_2
- More efficient solution methods have to be used for large numbers of inputs (e.g. least-angle regression, 2003).
- L_1 methods of various types are very popular

Example of L1 vs L2 effect

- Note the sparsity in the coefficients induces by L_1
- Lasso is an efficient way of performing the L_1 optimization

Bayesian view of regularization

- Start with a *prior distribution* over hypotheses
- As data comes in, compute a *posterior distribution*
- We often work with *conjugate priors*, which means that when combining the prior with the likelihood of the data, one obtains the posterior in the same form as the prior
- Regularization can be obtained from particular types of prior (usually, priors that put more probability on simple hypotheses)
- E.g. L_2 regularization can be obtained using a circular Gaussian prior for the weights, and the posterior will also be Gaussian
- E.g. L_1 regularization uses double-exponential prior (see (Tibshirani, 1996))

Bayesian view of regularization

- Prior is round Gaussian
- Posterior will be skewed by the data

What does the Bayesian view give us?

- Circles are data points
- Green is the true function
- Red lines on right are drawn from the posterior distribution

What does the Bayesian view give us?

- Functions drawn from the posterior can be very different
- Uncertainty decreases where there are data points

What does the Bayesian view give us?

- Uncertainty estimates, i.e. how sure we are of the value of the function
- These can be used to guide active learning: ask about inputs for which the uncertainty in the value of the function is very high
- In the limit, Bayesian and maximum likelihood learning converge to the same answer
- In the short term, one needs a good prior to get good estimates of the parameters
- Sometimes the prior is overwhelmed by the data likelihood too early.
- Using the Bayesian approach does NOT eliminate the need to do crossvalidation in general
- More on this later...

The anatomy of the error of an estimator

- Suppose we have examples $\langle \mathbf{x}, y \rangle$ where $y = f(\mathbf{x}) + \epsilon$ and ϵ is Gaussian noise with zero mean and standard deviation σ
- We fit a linear hypothesis h(x) = w^Tx, such as to minimize sum-squared error over the training data:

$$\sum_{i=1}^{m} (y_i - h(\mathbf{x}_i))^2$$

- Because of the hypothesis class that we chose (hypotheses linear in the parameters) for some target functions *f* we will have a *systematic prediction error*
- Even if f were truly from the hypothesis class we picked, depending on the data set we have, the parameters w that we find may be different; this *variability* due to the specific data set on hand is a different source of error

Bias-variance analysis

- Given a new data point x, what is the *expected prediction error*?
- Assume that the data points are drawn *independently and identically* distributed (i.i.d.) from a unique underlying probability distribution $P(\langle \mathbf{x}, y \rangle) = P(\mathbf{x})P(y|\mathbf{x})$
- The goal of the analysis is to compute, for an arbitrary given point \mathbf{x} ,

$$E_P\left[(y-h(\mathbf{x}))^2|\mathbf{x}\right]$$

where y is the value of \mathbf{x} in a data set, and the expectation is over all training sets of a given size, drawn according to P

• For a given hypothesis class, we can also compute the *true error*, which is the expected error over the input distribution:

$$\sum_{\mathbf{x}} E_P\left[(y - h(\mathbf{x}))^2 | \mathbf{x} \right] P(\mathbf{x})$$

(if \mathbf{x} continuous, sum becomes integral with appropriate conditions).

• We will decompose this expectation into three components

Recall: Statistics 101

- Let X be a random variable with possible values $x_i, i = 1 \dots n$ and with probability distribution P(X)
- The *expected value* or *mean* of X is:

$$E[X] = \sum_{i=1}^{n} x_i P(x_i)$$

- If X is continuous, roughly speaking, the sum is replaced by an integral, and the distribution by a density function
- The *variance* of X is:

$$Var[X] = E[(X - E(X))^2]$$

= $E[X^2] - (E[X])^2$

The variance lemma

$$Var[X] = E[(X - E[X])^{2}]$$

$$= \sum_{i=1}^{n} (x_{i} - E[X])^{2} P(x_{i})$$

$$= \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}E[X] + (E[X])^{2}) P(x_{i})$$

$$= \sum_{i=1}^{n} x_{i}^{2} P(x_{i}) - 2E[X] \sum_{i=1}^{n} x_{i} P(x_{i}) + (E[X])^{2} \sum_{i=1}^{n} P(x_{i})$$

$$= E[X^{2}] - 2E[X]E[X] + (E[X])^{2} \cdot 1$$

$$= E[X^{2}] - (E[X])^{2}$$

We will use the form:

$$E[X^{2}] = (E[X])^{2} + Var[X]$$

COMP-652 and ECSE-608, Lecture 2 - January 10, 2017

Bias-variance decomposition

• Simple algebra:

$$E_P \left[(y - h(\mathbf{x}))^2 | \mathbf{x} \right] = E_P \left[(h(\mathbf{x}))^2 - 2yh(\mathbf{x}) + y^2 | \mathbf{x} \right]$$
$$= E_P \left[(h(\mathbf{x}))^2 | \mathbf{x} \right] + E_P \left[y^2 | \mathbf{x} \right] - 2E_P [y | \mathbf{x}] E_P \left[h(\mathbf{x}) | \mathbf{x} \right]$$

- Let h
 (x) = E_P[h(x)|x] denote the mean prediction of the hypothesis at x, when h is trained with data drawn from P
- For the first term, using the variance lemma, we have:

$$E_P[(h(\mathbf{x}))^2|\mathbf{x}] = E_P[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^2|\mathbf{x}] + (\bar{h}(\mathbf{x}))^2$$

- Note that $E_P[y|\mathbf{x}] = E_P[f(\mathbf{x}) + \epsilon |\mathbf{x}] = f(\mathbf{x})$ (because of linearity of expectation and the assumption on $\epsilon \sim \mathcal{N}(0, \sigma)$)
- For the second term, using the variance lemma, we have:

$$E[y^2|\mathbf{x}] = E[(y - f(\mathbf{x}))^2|\mathbf{x}] + (f(\mathbf{x}))^2$$

Bias-variance decomposition (2)

• Putting everything together, we have:

$$E_{P} \left[(y - h(\mathbf{x}))^{2} | \mathbf{x} \right] = E_{P} \left[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^{2} | \mathbf{x} \right] + (\bar{h}(\mathbf{x}))^{2} - 2f(\mathbf{x})\bar{h}(\mathbf{x}) + E_{P} \left[(y - f(\mathbf{x}))^{2} | \mathbf{x} \right] + (f(\mathbf{x}))^{2} = E_{P} \left[(h(\mathbf{x}) - \bar{h}(\mathbf{x}))^{2} | \mathbf{x} \right] + (f(\mathbf{x}) - \bar{h}(\mathbf{x}))^{2} + E \left[(y - f(\mathbf{x}))^{2} | \mathbf{x} \right]$$

- The first term, $E_P[(h(\mathbf{x}) \bar{h}(\mathbf{x}))^2 | \mathbf{x}]$, is the *variance* of the hypothesis h at \mathbf{x} , when trained with finite data sets sampled randomly from P
- The second term, $(f(\mathbf{x}) \bar{h}(\mathbf{x}))^2$, is the squared bias (or systematic error) which is associated with the class of hypotheses we are considering
- The last term, $E[(y f(\mathbf{x}))^2 | \mathbf{x}]$ is the *noise*, which is due to the problem at hand, and cannot be avoided

Error decomposition

- The bias-variance sum approximates well the test error over a set of 1000 points
- x-axis measures the hypothesis complexity (decreasing left-to-right)
- Simple hypotheses usually have high bias (bias will be high at many points, so it will likely be high for many possible input distributions)
- Complex hypotheses have high variance: the hypothesis is very dependent on the data set on which it was trained.

Bias-variance trade-off

- Typically, bias comes from not having good hypotheses in the considered class
- Variance results from the hypothesis class containing "too many" hypotheses
- MLE estimation is typically unbiased, but has high variance
- Bayesian estimation is biased, but typically has lower variance
- Hence, we are faced with a *trade-off*: choose a more expressive class of hypotheses, which will generate higher variance, or a less expressive class, which will generate higher bias
- Making the trade-off has to depend on the amount of data available to fit the parameters (data usually mitigates the variance problem)

More on overfitting

- Overfitting depends on the amount of data, relative to the complexity of the hypothesis
- With more data, we can explore more complex hypotheses spaces, and still find a good solution

