Machine Learning (COMP-652 and ECSE-608)

Instructors: Doina Precup and Guillaume Rabusseau
Email: dprecup@cs.mcgill.ca and guillaume.rabusseau@mail.mcgill.ca

Teaching assistants: Tianyu Li and TBA
Class web page: http://www.cs.mcgill.ca/~dprecup/courses/ml.html

Outline

- Administrative issues
- What is machine learning?
- Types of machine learning
- Linear hypotheses
- Error functions
- Overfitting

Administrative issues

- Class materials:
- No required textbook, but several textbooks available
- Required or recommended readings (from books or research papers) posted on the class web page
- Class notes: posted on the web page
- Prerequisites:
- Knowledge of a programming language
- Knowledge of probability/statistics, calculus and linear algebra; general facility with math
- Some AI background is recommended but not required

Evaluation

- Four homework assignments (40\%)
- Midterm examination (30\%)
- Project (30\%)
- Participation to class discussions (up to 1% extra credit)

What is learning?

- H. Simon: Any process by which a system improves its performance
- M. Minsky: Learning is making useful changes in our minds
- R. Michalsky: Learning is constructing or modifying representations of what is being experienced
- L. Valiant: Learning is the process of knowledge acquisition in the absence of explicit programming

Why study machine learning?

Engineering reasons:

- Easier to build a learning system than to hand-code a working program! E.g.:
- Robot that learns a map of the environment by exploring
- Programs that learn to play games by playing against themselves
- Improving on existing programs, e.g.
- Instruction scheduling and register allocation in compilers
- Combinatorial optimization problems
- Solving tasks that require a system to be adaptive, e.g.
- Speech and handwriting recognition
- "Intelligent" user interfaces

Why study machine learning?

Scientific reasons:

- Discover knowledge and patterns in highly dimensional, complex data
- Sky surveys
- High-energy physics data
- Sequence analysis in bioinformatics
- Social network analysis
- Ecosystem analysis
- Understanding animal and human learning
- How do we learn language?
- How do we recognize faces?
- Creating real AI!
"If an expert system-brilliantly designed, engineered and implementedcannot learn not to repeat its mistakes, it is not as intelligent as a worm or a sea anemone or a kitten." (Oliver Selfridge).

Very brief history

- Studied ever since computers were invented (e.g. Samuel's checkers player)
- Very active in 1960s (neural networks)
- Died down in the 1970s
- Revival in early 1980s (decision trees, backpropagation, temporaldifference learning) - coined as "machine learning"
- Exploded since the 1990s
- Now: very active research field, several yearly conferences (e.g., ICML, NIPS), major journals (e.g., Machine Learning, Journal of Machine Learning Research), rapidly growing number of researchers
- The time is right to study in the field!
- Lots of recent progress in algorithms and theory
- Flood of data to be analyzed
- Computational power is available
- Growing demand for industrial applications

What are good machine learning tasks?

- There is no human expert
E.g., DNA analysis
- Humans can perform the task but cannot explain how E.g., character recognition
- Desired function changes frequently E.g., predicting stock prices based on recent trading data
- Each user needs a customized function E.g., news filtering

Important application areas

- Bioinformatics: sequence alignment, analyzing microarray data, information integration, ...
- Computer vision: object recognition, tracking, segmentation, active vision, ...
- Robotics: state estimation, map building, decision making
- Graphics: building realistic simulations
- Speech: recognition, speaker identification
- Financial analysis: option pricing, portfolio allocation
- E-commerce: automated trading agents, data mining, spam, ...
- Medicine: diagnosis, treatment, drug design,...
- Computer games: building adaptive opponents
- Multimedia: retrieval across diverse databases

Kinds of learning

Based on the information available:

- Supervised learning
- Reinforcement learning
- Unsupervised learning

Based on the role of the learner

- Passive learning
- Active learning

Passive and active learning

- Traditionally, learning algorithms have been passive learners, which take a given batch of data and process it to produce a hypothesis or model Data \rightarrow Learner \rightarrow Model
- Active learners are instead allowed to query the environment
- Ask questions
- Perform experiments
- Open issues: how to query the environment optimally? how to account for the cost of queries?

Example: A data set

Cell Nuclei of Fine Needle Aspirate

- Cell samples were taken from tumors in breast cancer patients before surgery, and imaged
- Tumors were excised
- Patients were followed to determine whether or not the cancer recurred, and how long until recurrence or disease free

Data (continued)

- Thirty real-valued variables per tumor.
- Two variables that can be predicted:
- Outcome ($\mathrm{R}=$ recurrence, $\mathrm{N}=$ non-recurrence)
- Time (until recurrence, for R, time healthy, for N).

tumor size	texture	perimeter	\ldots	outcome	time
18.02	27.6	117.5		N	31
17.99	10.38	122.8		N	61
20.29	14.34	135.1		R	27

Terminology

tumor size	texture	perimeter	\ldots	outcome	time
18.02	27.6	117.5		N	31
17.99	10.38	122.8		N	61
20.29	14.34	135.1		R	27

- Columns are called input variables or features or attributes
- The outcome and time (which we are trying to predict) are called output variables or targets
- A row in the table is called training example or instance
- The whole table is called (training) data set.
- The problem of predicting the recurrence is called (binary) classification
- The problem of predicting the time is called regression

More formally

tumor size	texture	perimeter	\ldots	outcome	time
18.02	27.6	117.5		N	31
17.99	10.38	122.8		N	61
20.29	14.34	135.1		R	27

- A training example i has the form: $\left\langle x_{i, 1}, \ldots x_{i, n}, y_{i}\right\rangle$ where n is the number of attributes (30 in our case).
- We will use the notation \mathbf{x}_{i} to denote the column vector with elements $x_{i, 1}, \ldots x_{i, n}$.
- The training set D consists of m training examples
- We denote the $m \times n$ matrix of attributes by \mathbf{X} and the size- m column vector of outputs from the data set by \mathbf{y}.

Supervised learning problem

- Let \mathcal{X} denote the space of input values
- Let \mathcal{Y} denote the space of output values
- Given a data set $D \subset \mathcal{X} \times \mathcal{Y}$, find a function:

$$
h: \mathcal{X} \rightarrow \mathcal{Y}
$$

such that $h(\mathbf{x})$ is a "good predictor" for the value of y.

- h is called a hypothesis
- Problems are categorized by the type of output domain
- If $\mathcal{Y}=\mathbb{R}$, this problem is called regression
- If \mathcal{Y} is a categorical variable (i.e., part of a finite discrete set), the problem is called classification
- If \mathcal{Y} is a more complex structure (eg graph) the problem is called structured prediction

Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.
2. Decide how to encode inputs and outputs.

This defines the input space \mathcal{X}, and the output space \mathcal{Y}.
(We will discuss this in detail later)
3. Choose a class of hypotheses/representations \mathcal{H}.
4. ...

Example: What hypothesis class should we pick?

Linear hypothesis

- Suppose y was a linear function of \mathbf{x} :

$$
h_{\mathbf{w}}(\mathbf{x})=w_{0}+w_{1} x_{1}(+\cdots)
$$

- w_{i} are called parameters or weights
- To simplify notation, we can add an attribute $x_{0}=1$ to the other n attributes (also called bias term or intercept term):

$$
h_{\mathrm{w}}(\mathbf{x})=\sum_{i=0}^{n} w_{i} x_{i}=\mathbf{w}^{T} \mathbf{x}
$$

where \mathbf{w} and \mathbf{x} are vectors of size $n+1$.
How should we pick w?

Error minimization!

- Intuitively, w should make the predictions of h_{w} close to the true values y on the data we have
- Hence, we will define an error function or cost function to measure how much our prediction differs from the "true" answer
- We will pick \mathbf{w} such that the error function is minimized

How should we choose the error function?

Least mean squares (LMS)

- Main idea: try to make $h_{\mathrm{w}}(\mathbf{x})$ close to y on the examples in the training set
- We define a sum-of-squares error function

$$
J(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

(the $1 / 2$ is just for convenience)

- We will choose \mathbf{w} such as to minimize $J(\mathbf{w})$

Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.
2. Decide how to encode inputs and outputs. This defines the input space \mathcal{X}, and the output space \mathcal{Y}.
3. Choose a class of hypotheses/representations \mathcal{H}.
4. Choose an error function (cost function) to define the best hypothesis
5. Choose an algorithm for searching efficiently through the space of hypotheses.

Notation reminder

- Consider a function $f\left(u_{1}, u_{2}, \ldots, u_{n}\right): \mathbb{R}^{n} \mapsto \mathbb{R}$ (for us, this will usually be an error function)
- The partial derivative w.r.t. u_{i} is denoted:

$$
\frac{\partial}{\partial u_{i}} f\left(u_{1}, u_{2}, \ldots, u_{n}\right): \mathbb{R}^{n} \mapsto \mathbb{R}
$$

The partial derivative is the derivative along the u_{i} axis, keeping all other variables fixed.

- The gradient $\nabla f\left(u_{1}, u_{2}, \ldots, u_{n}\right): \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ is a function which outputs a vector containing the partial derivatives. That is:

$$
\nabla f=\left\langle\frac{\partial}{\partial u_{1}} f, \frac{\partial}{\partial u_{2}} f, \ldots, \frac{\partial}{\partial u_{n}} f\right\rangle
$$

A bit of algebra

$$
\begin{aligned}
\frac{\partial}{\partial w_{j}} J(\mathbf{w}) & =\frac{\partial}{\partial w_{j}} \frac{1}{2} \sum_{i=1}^{m}\left(h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2} \\
& =\frac{1}{2} \cdot 2 \sum_{i=1}^{m}\left(h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right) \frac{\partial}{\partial w_{j}}\left(h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right) \\
& =\sum_{i=1}^{m}\left(h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right) \frac{\partial}{\partial w_{j}}\left(\sum_{l=0}^{n} w_{l} x_{i, l}-y_{i}\right) \\
& =\sum_{i=1}^{m}\left(h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)-y_{i}\right) x_{i, j}
\end{aligned}
$$

Setting all these partial derivatives to 0 , we get a linear system with $(n+1)$ equations and ($n+1$) unknowns.

The solution

- Recalling some multivariate calculus:

$$
\begin{aligned}
\nabla_{\mathrm{w}} J & =\nabla_{\mathbf{w}} \frac{1}{2}(\mathbf{X} \mathbf{w}-\mathbf{y})^{T}(\mathbf{X} \mathbf{w}-\mathbf{y}) \\
& =\nabla_{\mathbf{w}} \frac{1}{2}\left(\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}-\mathbf{y}^{T} \mathbf{X} \mathbf{w}-\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{y}+\mathbf{y}^{T} \mathbf{y}\right) \\
& =\mathbf{X}^{T} \mathbf{X} \mathbf{w}-\mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

- Setting gradient equal to zero:

$$
\begin{aligned}
\mathbf{X}^{T} \mathbf{X} \mathbf{w}-\mathbf{X}^{T} \mathbf{y} & =0 \\
\Rightarrow \mathbf{X}^{T} \mathbf{X} \mathbf{w} & =\mathbf{X}^{T} \mathbf{y} \\
\Rightarrow \mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} &
\end{aligned}
$$

- The inverse exists if the columns of \mathbf{X} are linearly independent.

Example: Data and best linear hypothesis

$$
y=1.60 x+1.05
$$

Linear regression summary

- The optimal solution (minimizing sum-squared-error) can be computed in polynomial time in the size of the data set.
- The solution is $\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$, where \mathbf{X} is the data matrix augmented with a column of ones, and \mathbf{y} is the column vector of target outputs.
- A very rare case in which an analytical, exact solution is possible

Coming back to mean-squared error function...

- Good intuitive feel (small errors are ignored, large errors are penalized)
- Nice math (closed-form solution, unique global optimum)
- Geometric interpretation

- Any other interpretation?

A probabilistic assumption

- Assume y_{i} is a noisy target value, generated from a hypothesis $h_{\mathrm{w}}(\mathbf{x})$
- More specifically, assume that there exists w such that:

$$
y_{i}=h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)+\epsilon_{i}
$$

where ϵ_{i} is random variable (noise) drawn independently for each \mathbf{x}_{i} according to some Gaussian (normal) distribution with mean zero and variance σ.

- How should we choose the parameter vector w?

Bayes theorem in learning

Let h be a hypothesis and D be the set of training data. Using Bayes theorem, we have:

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

where:

- $P(h)$ is the prior probability of hypothesis h
- $P(D)=\int_{h} P(D \mid h) P(h)$ is the probability of training data D (normalization, independent of h)
- $P(h \mid D)$ is the probability of h given D
- $P(D \mid h)$ is the probability of D given h (likelihood of the data)

Choosing hypotheses

- What is the most probable hypothesis given the training data?
- Maximum a posteriori (MAP) hypothesis $h_{M A P}$:

$$
\begin{aligned}
h_{M A P} & =\arg \max _{h \in \mathcal{H}} P(h \mid D) \\
& =\arg \max _{h \in \mathcal{H}} \frac{P(D \mid h) P(h)}{P(D)} \text { (using Bayes theorem) } \\
& =\arg \max _{h \in \mathcal{H}} P(D \mid h) P(h)
\end{aligned}
$$

Last step is because $P(D)$ is independent of h (so constant for the maximization)

- This is the Bayesian answer (more in a minute)

Maximum likelihood estimation

$$
h_{M A P}=\arg \max _{h \in \mathcal{H}} P(D \mid h) P(h)
$$

- If we assume $P\left(h_{i}\right)=P\left(h_{j}\right)$ (all hypotheses are equally likely a priori) then we can further simplify, and choose the maximum likelihood (ML) hypothesis:

$$
h_{M L}=\arg \max _{h \in \mathcal{H}} P(D \mid h)=\arg \max _{h \in \mathcal{H}} L(h)
$$

- Standard assumption: the training examples are independently identically distributed (i.i.d.)
- This alows us to simplify $P(D \mid h)$:

$$
P(D \mid h)=\prod_{i=1}^{m} P\left(\left\langle\mathbf{x}_{\mathbf{i}}, y_{i}\right\rangle \mid h\right)=\prod_{i=1}^{m} P\left(y_{i} \mid \mathbf{x}_{i} ; h\right) P\left(\mathbf{x}_{i}\right)
$$

The log trick

- We want to maximize:

$$
L(h)=\prod_{i=1}^{m} P\left(y_{i} \mid \mathbf{x}_{i} ; h\right) P\left(\mathbf{x}_{i}\right)
$$

This is a product, and products are hard to maximize!

- Instead, we will maximize $\log L(h)$! (the log-likelihood function)

$$
\log L(h)=\sum_{i=1}^{m} \log P\left(y_{i} \mid \mathbf{x}_{i} ; h\right)+\sum_{i=1}^{m} \log P\left(\mathbf{x}_{i}\right)
$$

- The second sum depends on D, but not on h, so it can be ignored in the search for a good hypothesis

Maximum likelihood for regression

- Adopt the assumption that:

$$
y_{i}=h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)+\epsilon_{i},
$$

where $\epsilon_{i} \sim \mathcal{N}(0, \sigma)$.

- The best hypothesis maximizes the likelihood of $y_{i}-h_{\mathrm{w}}\left(\mathbf{x}_{i}\right)=\epsilon_{i}$
- Hence,

$$
L(\mathbf{w})=\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2}\left(\frac{y_{i}-h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)}{\sigma}\right)^{2}}
$$

because the noise variables ϵ_{i} are from a Gaussian distribution

Applying the log trick

$$
\begin{aligned}
\log L(\mathbf{w}) & =\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{\left(y_{i}-h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}}{\sigma^{2}}}\right) \\
& =\sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)-\sum_{i=1}^{m} \frac{1}{2} \frac{\left(y_{i}-h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}}{\sigma^{2}}
\end{aligned}
$$

Maximizing the right hand side is the same as minimizing:

$$
\sum_{i=1}^{m} \frac{1}{2} \frac{\left(y_{i}-h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}}{\sigma^{2}}
$$

This is our old friend, the sum-squared-error function! (the constants that are independent of h can again be ignored)

Maximum likelihood hypothesis for least-squares estimators

- Under the assumption that the training examples are i.i.d. and that we have Gaussian target noise, the maximum likelihood parameters w are those minimizing the sum squared error:

$$
\mathbf{w}^{*}=\arg \min _{\mathbf{w}} \sum_{i=1}^{m}\left(y_{i}-h_{\mathbf{w}}\left(\mathbf{x}_{\mathbf{i}}\right)\right)^{2}
$$

- This makes explicit the hypothesis behind minimizing the sum-squared error
- If the noise is not normally distributed, maximizing the likelihood will not be the same as minimizing the sum-squared error
- In practice, different loss functions are used depending on the noise assumption

A graphical representation for the data generation process

- Circles represent (random) variables)
- Arrows represent dependencies between variables
- Some variables are observed, others need to be inferred because they are hidden (latent)
- New assumptions can be incorporated by making the model more complicated

Predicting recurrence time based on tumor size

Is linear regression enough?

- Linear regression is too simple for most realistic problems But it should be the first thing you try for real-valued outputs!
- Problems can also occur is $\mathbf{X}^{T} \mathbf{X}$ is not invertible.
- Two possible solutions:

1. Transform the data

- Add cross-terms, higher-order terms
- More generally, apply a transformation of the inputs from \mathcal{X} to some other space \mathcal{X}^{\prime}, then do linear regression in the transformed space

2. Use a different hypothesis class (e.g. non-linear functions)

- Today we focus on the first approach

Polynomial fits

- Suppose we want to fit a higher-degree polynomial to the data. (E.g., $y=w_{2} x^{2}+w_{1} x^{1}+w_{0}$.)
- Suppose for now that there is a single input variable per training sample.
- How do we do it?

Answer: Polynomial regression

- Given data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m}, y_{m}\right)$.
- Suppose we want a degree- d polynomial fit.
- Let \mathbf{y} be as before and let

$$
\mathbf{X}=\left[\begin{array}{ccccc}
x_{1}^{d} & \ldots & x_{1}^{2} & x_{1} & 1 \\
x_{2}^{d} & \ldots & x_{2}^{2} & x_{2} & 1 \\
\vdots & & \vdots & \vdots & \vdots \\
x_{m}^{d} & \ldots & x_{m}^{2} & x_{m} & 1
\end{array}\right]
$$

- Solve the linear regression $\mathbf{X w} \approx \mathbf{y}$.

Example of quadratic regression: Data matrices

$$
\mathbf{X}=\left[\begin{array}{ccc}
0.75 & 0.86 & 1 \\
0.01 & 0.09 & 1 \\
0.73 & -0.85 & 1 \\
0.76 & 0.87 & 1 \\
0.19 & -0.44 & 1 \\
0.18 & -0.43 & 1 \\
1.22 & -1.10 & 1 \\
0.16 & 0.40 & 1 \\
0.93 & -0.96 & 1 \\
0.03 & 0.17 & 1
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
2.49 \\
0.83 \\
-0.25 \\
3.10 \\
0.87 \\
0.02 \\
-0.12 \\
1.81 \\
-0.83 \\
0.43
\end{array}\right]
$$

$\mathbf{X}^{T} \mathbf{X}$

$$
\begin{gathered}
\mathbf{X}^{T} \mathbf{X}= \\
{\left[\begin{array}{ccccccccc}
0.75 & 0.01 & 0.73 & 0.76 & 0.19 & 0.18 & 1.22 & 0.16 & 0.93 \\
0.86 & 0.09 & -0.85 & 0.87 & -0.44 & -0.43 & -1.10 & 0.40 & -0.96 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1
\end{array}\right] \times\left[\begin{array}{ccc}
0.75 & 0.86 & 1 \\
0.01 & 0.09 & 1 \\
0.73 & -0.85 & 1 \\
0.76 & 0.87 & 1 \\
0.19 & -0.44 & 1 \\
0.18 & -0.43 & 1 \\
1.22 & -1.10 & 1 \\
0.16 & 0.40 & 1 \\
0.93 & -0.96 & 1 \\
0.03 & 0.17 & 1
\end{array}\right]} \\
=\left[\begin{array}{cccc}
4.11 & -1.64 & 4.95 \\
-1.64 & 4.95 & -1.39 \\
4.95 & -1.39 & 10
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{l}
3.60 \\
6.49 \\
8.34
\end{array}\right]
\end{aligned}
$$

Solving for w

$$
\begin{aligned}
\mathbf{w} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\left[\begin{array}{ccc}
4.11 & -1.64 & 4.95 \\
-1.64 & 4.95 & -1.39 \\
4.95 & -1.39 & 10
\end{array}\right]^{-1}\left[\begin{array}{l}
3.60 \\
6.49 \\
8.34
\end{array}\right]=\left[\begin{array}{l}
0.68 \\
1.74 \\
0.73
\end{array}\right]
\end{aligned}
$$

So the best order-2 polynomial is $y=0.68 x^{2}+1.74 x+0.73$.

Linear function approximation in general

- Given a set of examples $\left\langle\mathbf{x}_{i}, y_{i}\right\rangle_{i=1 \ldots m}$, we fit a hypothesis

$$
h_{\mathbf{w}}(\mathbf{x})=\sum_{k=0}^{K-1} w_{k} \phi_{k}(\mathbf{x})=\mathbf{w}^{T} \phi(\mathbf{x})
$$

where ϕ_{k} are called basis functions

- The best \mathbf{w} is considered the one which minimizes the sum-squared error over the training data:

$$
\sum_{i=1}^{m}\left(y_{i}-h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- We can find the best \mathbf{w} in closed form:

$$
\mathbf{w}=\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \mathbf{y}
$$

or by other methods (e.g. gradient descent - as will be seen later)

Linear models in general

- By linear models, we mean that the hypothesis function $h_{\mathrm{w}}(\mathbf{x})$ is a linear function of the parameters \mathbf{w}
- This does not mean the $h_{\mathrm{w}}(\mathbf{x})$ is a linear function of the input vector \mathbf{x} (e.g., polynomial regression)
- In general

$$
h_{\mathrm{w}}(\mathbf{x})=\sum_{k=0}^{K-1} w_{k} \phi_{k}(\mathbf{x})=\mathbf{w}^{T} \phi(\mathbf{x})
$$

where ϕ_{k} are called basis functions

- Usually, we will assume that $\phi_{0}(\mathbf{x})=1, \forall \mathbf{x}$, to create a bias term
- The hypothesis can alternatively be written as:

$$
h_{\mathbf{w}}(\mathbf{x})=\mathbf{\Phi} \mathbf{w}
$$

where $\boldsymbol{\Phi}$ is a matrix with one row per instance; row j contains $\phi\left(\mathbf{x}_{j}\right)$.

- Basis functions are fixed

Example basis functions: Polynomials

"Global" functions: a small change in x may cause large change in the output of many basis functions

Example basis functions: Gaussians

- μ_{k} controls the position along the x-axis
- σ controls the width (activation radius)
- μ_{k}, σ fixed for now (later we discuss adjusting them)
- Usually thought as "local" functions: if σ is relatively small, a small change in x only causes a change in the output of a few basis functions (the ones with means close to x)

Example basis functions: Sigmoidal

- μ_{k} controls the position along the x-axis
- s controls the slope
- μ_{k}, s fixed for now (later we discuss adjusting them)
- "Local" functions: a small change in x only causes a change in the output of a few basis (most others will stay close to 0 or 1)

Order-2 fit

Is this a better fit to the data?

Order-3 fit

Is this a better fit to the data?

Order-4 fit

Is this a better fit to the data?

Order-5 fit

Is this a better fit to the data?

Order-6 fit

Is this a better fit to the data?

Order-7 fit

Is this a better fit to the data?

Order-8 fit

Is this a better fit to the data?

Order-9 fit

Is this a better fit to the data?

Overfitting

- A general, HUGELY IMPORTANT problem for all machine learning algorithms
- We can find a hypothesis that predicts perfectly the training data but does not generalize well to new data
- E.g., a lookup table!
- We are seeing an instance here: if we have a lot of parameters, the hypothesis "memorizes" the data points, but is wild everywhere else.
- Next time: defining overfitting formally, and finding ways to avoid it

