Machine Learning (COMP-652 and ECSE-608)
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Email: dprecup@cs.mcgill.ca and guillaume.rabusseau@mail.mcgill.ca
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Administrative issues

e Class materials:

— No required textbook, but several textbooks available

— Required or recommended readings (from books or research papers)
posted on the class web page

— Class notes: posted on the web page

e Prerequisites:

— Knowledge of a programming language

— Knowledge of probability /statistics, calculus and linear algebra; general
facility with math

— Some Al background is recommended but not required
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Evaluation

e Four homework assignments (40%)
e Midterm examination (30%)
e Project (30%)

e Participation to class discussions (up to 1% extra credit)
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What is learning?

e H. Simon: Any process by which a system improves its performance
e M. Minsky: Learning is making useful changes in our minds

e R. Michalsky: Learning is constructing or modifying representations of
what is being experienced

e L. Valiant: Learning is the process of knowledge acquisition in the
absence of explicit programming
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Why study machine learning?
Engineering reasons:

e Easier to build a learning system than to hand-code a working program!
E.g.
— Robot that learns a map of the environment by exploring
— Programs that learn to play games by playing against themselves

e Improving on existing programs, e.g.

— Instruction scheduling and register allocation in compilers
— Combinatorial optimization problems

e Solving tasks that require a system to be adaptive, e.g.

— Speech and handwriting recognition
— “Intelligent” user interfaces
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Why study machine learning?
Scientific reasons:

e Discover knowledge and patterns in highly dimensional, complex data
— Sky surveys
— High-energy physics data
— Sequence analysis in bioinformatics
— Social network analysis
— Ecosystem analysis

e Understanding animal and human learning

— How do we learn language?
— How do we recognize faces?

e Creating real All

“If an expert system—brilliantly designed, engineered and implemented—
cannot learn not to repeat its mistakes, it is not as intelligent as a worm
or a sea anemone or a kitten." (Oliver Selfridge).
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Very brief history

e Studied ever since computers were invented (e.g. Samuel’s checkers
player)

e Very active in 1960s (neural networks)

e Died down in the 1970s

e Revival in early 1980s (decision trees, backpropagation, temporal-
difference learning) - coined as “machine learning”

e Exploded since the 1990s

e Now: very active research field, several yearly conferences (e.g., ICML,
NIPS), major journals (e.g., Machine Learning, Journal of Machine
Learning Research), rapidly growing number of researchers

e The time is right to study in the field!
— Lots of recent progress in algorithms and theory
— Flood of data to be analyzed
— Computational power is available
— Growing demand for industrial applications
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What are good machine learning tasks?

e There is no human expert
E.g., DNA analysis
e Humans can perform the task but cannot explain how
E.g., character recognition
e Desired function changes frequently
E.g., predicting stock prices based on recent trading data
e Each user needs a customized function

E.g., news filtering
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Important application areas

e Bioinformatics:  sequence alignment, analyzing microarray data,
information integration, ...

e Computer vision: object recognition, tracking, segmentation, active
vision, ...

e Robotics: state estimation, map building, decision making

e Graphics: building realistic simulations

e Speech: recognition, speaker identification

e Financial analysis: option pricing, portfolio allocation

e E-commerce: automated trading agents, data mining, spam, ...
e Medicine: diagnosis, treatment, drug design,...

e Computer games: building adaptive opponents

e Multimedia: retrieval across diverse databases
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Kinds of learning

Based on the information available:

e Supervised learning
e Reinforcement learning

e Unsupervised learning

Based on the role of the learner

e Passive learning

e Active learning
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Passive and active learning

e T[raditionally, learning algorithms have been passive learners, which take
a given batch of data and process it to produce a hypothesis or model

Data — Learner — Model
e Active learners are instead allowed to query the environment

— Ask questions
— Perform experiments

e Open issues: how to query the environment optimally? how to account
for the cost of queries?
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Example: A data set

Cell Nuclei of Fine Needle Aspirate

Features

Diagnosis

Prognosis

Quit

e Cell samples were taken from tumors in breast cancer patients before

surgery, and imaged
e [umors were excised

e Patients were followed to determine whether or not the cancer recurred,

and how long until recurrence or disease free

COMP-652 and ECSE-608, Lecture 1 - January 5, 2017

12



Data (continued)

e Thirty real-valued variables per tumor.
e Two variables that can be predicted:

— Outcome (R=recurrence, N=non-recurrence)

— Time (until recurrence, for R, time healthy, for N).

tumor size texture perimeter outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
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Terminology

tumor size texture perimeter ... | outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27

e Columns are called input variables or features or attributes

e The outcome and time (which we are trying to predict) are called output
variables or targets

e A row in the table is called training example or instance
e The whole table is called (training) data set.
e The problem of predicting the recurrence is called (binary) classification

e The problem of predicting the time is called regression
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More formally

tumor size  texture perimeter ... outcome  time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27

A training example i has the form: (x;1,...%;n,y;) where n is the
number of attributes (30 in our case).

We will use the notation x; to denote the column vector with elements
Lily---Lin-
The training set D consists of m training examples

We denote the m x n matrix of attributes by X and the size-m column
vector of outputs from the data set by y.
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Supervised learning problem

e Let X denote the space of input values
e Let YV denote the space of output values
e Given adataset D C X x ), find a function:

h:X =Y

such that h(x) is a ‘good predictor” for the value of y.

e h is called a hypothesis
e Problems are categorized by the type of output domain
— If Y = R, this problem is called regression

— If Y is a categorical variable (i.e., part of a finite discrete set), the

problem is called classification

— If )V is a more complex structure (eg graph) the problem is called

structured prediction
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.
This defines the input space X', and the output space ).
(We will discuss this in detail later)

3. Choose a class of hypotheses/representations H .
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Example: What hypothesis class should we pick?
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x Y
0.86 | 2.49
0.09 | 0.83
-0.85 | -0.25
0.87 | 3.10
-0.44 | 0.87
-0.43 | 0.02
-1.10 | -0.12
0.40 | 1.81
-0.96 | -0.83
0.17 | 0.43
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Linear hypothesis
e Suppose y was a linear function of x:

]’LW(X) = Wy -+ w1$1(—|— s )

e w, are called parameters or weights

e To simplify notation, we can add an attribute x5 = 1 to the other n
attributes (also called bias term or intercept term):

n
hW(X) = Z W;; — WTX
1=0

where w and x are vectors of size n + 1.
How should we pick w?
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Error minimization!

e Intuitively, w should make the predictions of hy, close to the true values
y on the data we have

e Hence, we will define an error function or cost function to measure how
much our prediction differs from the "true” answer

e We will pick w such that the error function is minimized

How should we choose the error function?
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Least mean squares (LMS)

e Main idea: try to make hy(x) close to y on the examples in the training

set
e We define a sum-of-squares error function

(the 1/2 is just for convenience)
e We will choose w such as to minimize J(w)
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.
2. Decide how to encode inputs and outputs.
This defines the input space X', and the output space ).
3. Choose a class of hypotheses/representations H .
4. Choose an error function (cost function) to define the best hypothesis

5. Choose an algorithm for searching efficiently through the space of
hypotheses.
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Notation reminder

e Consider a function f(ui,us,...,u,) : R™ — R (for us, this will usually
be an error function)

e The partial derivative w.r.t. u; is denoted:

0
a—/uif(Uh'U,Q,...,un) R"— R

The partial derivative is the derivative along the u; axis, keeping all other
variables fixed.

e The gradient V f(u1,us,...,uy) : R® — R™ is a function which outputs
a vector containing the partial derivatives.

That is: 5 3 5
V= < / /s >

811,1 7(911/2 ’8—un
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A bit of algebra

Q
\ S

1 m
8—ij(W) = 5 Z
- 2 Z 6?03- (hw(x:) — ¥i)

(hw(xi) — yz)aiwj (Z WT4,1 — yz)

(hw(xs) — yz)fl?zg

I
'MS l\DlH Q

1=1

|
.MS

1

1

Setting all these partial derivatives to 0, we get a linear system with (n+1)
equations and (n + 1) unknowns.
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The solution
e Recalling some multivariate calculus:

1
Vwd = VWE(XW — y)T(XW —y)

1
= ng(WTXTXW —y'Xw—w' X'y + yTy)

= X'xw-X'y
e Setting gradient equal to zero:
X' Xw-XTy = 0
= X"Xw = X'y
= w = (X'X)" X'y

e The inverse exists if the columns of X are linearly independent.
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Example: Data and best linear hypothesis
y = 1.60x + 1.05
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Linear regression summary

e The optimal solution (minimizing sum-squared-error) can be computed
in polynomial time in the size of the data set.

e The solution is w = (X?X) X'y, where X is the data matrix
augmented with a column of ones, and y is the column vector of target
outputs.

e A very rare case in which an analytical, exact solution is possible
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Coming back to mean-squared error function...

e Good intuitive feel (small errors are ignored, large errors are penalized)
e Nice math (closed-form solution, unique global optimum)

e Geometric interpretation

e Any other interpretation?
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A probabilistic assumption

e Assume y; is a noisy target value, generated from a hypothesis hy(x)
e More specifically, assume that there exists w such that:

Yi = hw(xi) + €

where ¢; is random variable (noise) drawn independently for each x;

according to some Gaussian (normal) distribution with mean zero and
variance o.

e How should we choose the parameter vector w?

COMP-652 and ECSE-608, Lecture 1 - January 5, 2017 29



Bayes theorem in learning

Let h be a hypothesis and D be the set of training data.
Using Bayes theorem, we have:

P(h|D) =

where:

h) is the prior probab///ty of hypothesis h

P(
P(D) [, P(D|h)P(h) is the probability of training data D
(normallzatlon independent of h)

h|D) is the probability of h given D
D|h) is the probability of D given h (likelihood of the data)

P(
P(
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Choosing hypotheses

e What is the most probable hypothesis given the training data?
o Maximum a posteriori (MAP) hypothesis hsap:

h — P(h|D
MAP arg max (h|D)

B P(D|h)P(h)
- YRYSLT P(D)

— P(D|h)P(h
a@ﬁg(\)()

(using Bayes theorem)

Last step is because P(D) is independent of h (so constant for the
maximization)

e This is the Bayesian answer (more in a minute)
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Maximum likelihood estimation

h — P(D|W)P(h
MAP = argmax (D|h)P(h)

o If we assume P(h;) = P(h;) (all hypotheses are equally likely a priori)
then we can further simplify, and choose the maximum likelihood (ML)
hypothesis:

harr = P(D|h) = L(h
mp = argmax P(D|h) = argmax L(h)

e Standard assumption: the training examples are independently identically
distributed (i.i.d.)
e This alows us to simplify P(D|h):

m m

P(D|h) = HP(<Xiayi>|h) — HP(%|X¢;h)P(Xz’)
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The log trick

e \We want to maximize:

m

L(h) = | [ P(yilxi; h)P(x;)

1=1

This is a product, and products are hard to maximize!

e Instead, we will maximize log L(h)! (the log-likelihood function)

log L(h) =) log P(y;|xi; h) + > _log P(x;)
1=1 1=1

e The second sum depends on D, but not on h, so it can be ignored in the
search for a good hypothesis
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Maximum likelihood for regression

e Adopt the assumption that:

yi = hw(x:) + €,

where ¢; ~ N(0,0).
e The best hypothesis maximizes the likelihood of y; — hyw(x;) = €;
e Hence,

% y,—h;v(xi))2
H 1V 27‘(‘0‘

because the noise variables ¢; are from a Gaussian distribution
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Applying the log trick

m 1 1 (i—hw(x))*
log L(w) = Zlog \/726 2 o2

P 2o

= 1 1 (yi — hw(x))?
_ Zlog _Z_(y (%3))

1=1 v 27-‘-0-2 1=1 2 02

This is our old friend, the sum-squared-error function! (the constants that
are independent of i can again be ignored)
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Maximum likelihood hypothesis for least-squares
estimators

e Under the assumption that the training examples are i.i.d. and that we
have Gaussian target noise, the maximum likelihood parameters w are
those minimizing the sum squared error:

W = argmin 3 (4 — ha(x9)°
1=1

e This makes explicit the hypothesis behind minimizing the sum-squared
error

e If the noise is not normally distributed, maximizing the likelihood will not
be the same as minimizing the sum-squared error

e In practice, different loss functions are used depending on the noise
assumption
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A graphical representation for the data generation
process

ML: fixed

but unknown eps~N(0,sigma)

@

\/

( 'y | y=h_w(x)+eps
Deterministic

e Circles represent (random) variables)
e Arrows represent dependencies between variables

e Some variables are observed, others need to be inferred because they are
hidden (latent)

e New assumptions can be incorporated by making the model more
complicated
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Predicting recurrence time based on tumor size

80
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Is linear regression enough?

e Linear regression is too simple for most realistic problems

But it should be the first thing you try for real-valued outputs!
e Problems can also occur is X*'X is not invertible.
e Two possible solutions:

1. Transform the data
— Add cross-terms, higher-order terms
— More generally, apply a transformation of the inputs from X to some
other space X”, then do linear regression in the transformed space
2. Use a different hypothesis class (e.g. non-linear functions)

e Today we focus on the first approach
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Polynomial fits

e Suppose we want to fit a higher-degree polynomial to the data.
(E.g., y = woz?® + wiz! + wy.)
e Suppose for now that there is a single input variable per training sample.

e How do we do it?
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Answer: Polynomial regression

e Given data: (z1,v1), (2,¥2),- -, (T, Ym)-
e Suppose we want a degree-d polynomial fit.

e Let y be as before and let

- 5 .
a:cll :1:% r1 1
x _ | 2 x5 wx2 1
d 2
| T, Ty, Tm 1

e Solve the linear regression Xw ~ y.
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Example of quadratic regression: Data matrices

[ 0.75 0.86
0.01 0.09
0.73 —0.85
0.76 0.87
0.19 —0.44
X = 0.18 —0.43
1.22 —1.10
0.16 0.40
0.93 —0.96
| 0.03  0.17
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2.49
0.83
—0.25
3.10
0.87
0.02
—0.12
1.81
—0.83
0.43
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XX

XX =

0.750.01 0.73 0.76 0.19 0.18 1.22 0.16 0.93 0.03
0.86 0.09 —0.85 0.87 —0.44 —0.43 —1.10 0.40 —0.96 0.17 X

1 1 1 1 1 1 1

4.11
= | —1.64
4.95
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—1.64
4.95
—1.39

1

4.95
—1.39
10

0.75
0.01
0.73
0.76
0.19
0.18
1.22
0.16
0.93
0.03

0.86
0.09
—0.85
0.87
—0.44
—0.43
—1.10
0.40
—0.96
0.17
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0.750.01 0.73 0.76 0.19 0.18

1 1 1 1 1 1

COMP-652 and ECSE-608, Lecture 1 - January 5, 2017

1.22 0.16 0.93 0.03
0.86 0.09 —0.85 0.87 —0.44 —0.43 —1.10 0.40 —0.96 0.17

1 1

. 3.60 |
6.49

834 |

1

1

X

2.49
0.83
—0.25
3.10
0.87
0.02
—0.12
1.81
—0.83
0.43
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Solving for w

w = (XTX)" X'y
411 —1.64 4.95 11T 3.60 0.68
— —1.64 4.95 —1.39 6.49 | = | 1.74
495 —1.39 10 8.34 0.73

So the best order-2 polynomial is y = 0.68z% + 1.74x + 0.73.
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Linear function approximation in general

e Given a set of examples (x;,y;)i=1...m, we fit a hypothesis

() = 3 widi(x) = wT(x)
k=0

where ¢y are called basis functions
e The best w is considered the one which minimizes the sum-squared error
over the training data:

m

Z(yz — hW(Xi))2

1=1

e \We can find the best w in closed form:
w=(®'®) o'y

or by other methods (e.g. gradient descent - as will be seen later)
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Linear models in general

e By linear models, we mean that the hypothesis function hy(x) is a linear
function of the parameters w

e This does not mean the hyw(x) is a linear function of the input vector x
(e.g., polynomial regression)

e |n general

() = 3 widi(x) = wT(x)
k=0

where ¢, are called basis functions
e Usually, we will assume that ¢g(x) = 1, Vx, to create a bias term
e The hypothesis can alternatively be written as:

hw(x) = W

where @ is a matrix with one row per instance; row j contains ¢(x;).
e Basis functions are fixed
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Example basis functions: Polynomials

1

“Global” functions: a small change in £ may cause large change in the
output of many basis functions
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Example basis functions: Gaussians

(1. controls the position along the x-axis

o controls the width (activation radius)

i, o fixed for now (later we discuss adjusting them)

Usually thought as “local” functions: if o is relatively small, a small
change in x only causes a change in the output of a few basis functions
(the ones with means close to x)
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Example basis functions: Sigmoidal

1

0.75;
0.5}
0.25f
0

-1 1
b(z) = 0 (”” _S“ where o(a) — — exlp( .

1 controls the position along the x-axis
s controls the slope
ik, s fixed for now (later we discuss adjusting them)

“Local” functions: a small change in x only causes a change in the
output of a few basis (most others will stay close to 0 or 1)
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Order-2 fit

Is this a better fit to the data?
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Order-3 fit

X

Is this a better fit to the data?
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Order-4 fit

Is this a better fit to the data?
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Order-5 fit

Is this a better fit to the data?
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Order-6 fit

X

Is this a better fit to the data?
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Order-7 fit

X

Is this a better fit to the data?
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Order-8 fit

X

Is this a better fit to the data?
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Order-9 fit

X qi

X

X

Is this a better fit to the data?
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Overfitting

e A general, HUGELY IMPORTANT problem for all machine learning
algorithms

e We can find a hypothesis that predicts perfectly the training data but
does not generalize well to new data

e E.g., a lookup table!

e We are seeing an instance here: if we have a lot of parameters, the
hypothesis " memorizes” the data points, but is wild everywhere else.

e Next time: defining overfitting formally, and finding ways to avoid it
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