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Administrative issues

• Class materials:

– No required textbook, but several textbooks available
– Required or recommended readings (from books or research papers)

posted on the class web page
– Class notes: posted on the web page

• Prerequisites:

– Knowledge of a programming language
– Knowledge of probability/statistics, calculus and linear algebra; general

facility with math
– Some AI background is recommended but not required
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Evaluation

• Four homework assignments (40%)

• Midterm examination (30%)

• Project (30%)

• Participation to class discussions (up to 1% extra credit)
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What is learning?

• H. Simon: Any process by which a system improves its performance

• M. Minsky: Learning is making useful changes in our minds

• R. Michalsky: Learning is constructing or modifying representations of
what is being experienced

• L. Valiant: Learning is the process of knowledge acquisition in the
absence of explicit programming
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Why study machine learning?

Engineering reasons:

• Easier to build a learning system than to hand-code a working program!
E.g.:

– Robot that learns a map of the environment by exploring
– Programs that learn to play games by playing against themselves

• Improving on existing programs, e.g.

– Instruction scheduling and register allocation in compilers
– Combinatorial optimization problems

• Solving tasks that require a system to be adaptive, e.g.

– Speech and handwriting recognition
– “Intelligent” user interfaces
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Why study machine learning?

Scientific reasons:

• Discover knowledge and patterns in highly dimensional, complex data

– Sky surveys
– High-energy physics data
– Sequence analysis in bioinformatics
– Social network analysis
– Ecosystem analysis

• Understanding animal and human learning

– How do we learn language?
– How do we recognize faces?

• Creating real AI!

“If an expert system–brilliantly designed, engineered and implemented–
cannot learn not to repeat its mistakes, it is not as intelligent as a worm
or a sea anemone or a kitten.” (Oliver Selfridge).
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Very brief history

• Studied ever since computers were invented (e.g. Samuel’s checkers
player)
• Very active in 1960s (neural networks)
• Died down in the 1970s
• Revival in early 1980s (decision trees, backpropagation, temporal-

difference learning) - coined as “machine learning”
• Exploded since the 1990s
• Now: very active research field, several yearly conferences (e.g., ICML,

NIPS), major journals (e.g., Machine Learning, Journal of Machine
Learning Research), rapidly growing number of researchers
• The time is right to study in the field!

– Lots of recent progress in algorithms and theory
– Flood of data to be analyzed
– Computational power is available
– Growing demand for industrial applications
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What are good machine learning tasks?

• There is no human expert

E.g., DNA analysis

• Humans can perform the task but cannot explain how

E.g., character recognition

• Desired function changes frequently

E.g., predicting stock prices based on recent trading data

• Each user needs a customized function

E.g., news filtering
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Important application areas

• Bioinformatics: sequence alignment, analyzing microarray data,
information integration, ...

• Computer vision: object recognition, tracking, segmentation, active
vision, ...

• Robotics: state estimation, map building, decision making

• Graphics: building realistic simulations

• Speech: recognition, speaker identification

• Financial analysis: option pricing, portfolio allocation

• E-commerce: automated trading agents, data mining, spam, ...

• Medicine: diagnosis, treatment, drug design,...

• Computer games: building adaptive opponents

• Multimedia: retrieval across diverse databases
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Kinds of learning

Based on the information available:

• Supervised learning

• Reinforcement learning

• Unsupervised learning

Based on the role of the learner

• Passive learning

• Active learning
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Passive and active learning

• Traditionally, learning algorithms have been passive learners, which take
a given batch of data and process it to produce a hypothesis or model

Data → Learner → Model

• Active learners are instead allowed to query the environment

– Ask questions
– Perform experiments

• Open issues: how to query the environment optimally? how to account
for the cost of queries?

COMP-652 and ECSE-608, Lecture 1 - January 5, 2017 11



Example: A data set
Cell Nuclei of Fine Needle Aspirate

• Cell samples were taken from tumors in breast cancer patients before
surgery, and imaged

• Tumors were excised

• Patients were followed to determine whether or not the cancer recurred,
and how long until recurrence or disease free
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Data (continued)

• Thirty real-valued variables per tumor.

• Two variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)
– Time (until recurrence, for R, time healthy, for N).

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .
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Terminology

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .

• Columns are called input variables or features or attributes

• The outcome and time (which we are trying to predict) are called output
variables or targets

• A row in the table is called training example or instance

• The whole table is called (training) data set.

• The problem of predicting the recurrence is called (binary) classification

• The problem of predicting the time is called regression
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More formally
tumor size texture perimeter . . . outcome time

18.02 27.6 117.5 N 31

17.99 10.38 122.8 N 61

20.29 14.34 135.1 R 27

. . .

• A training example i has the form: 〈xi,1, . . . xi,n, yi〉 where n is the
number of attributes (30 in our case).

• We will use the notation xi to denote the column vector with elements
xi,1, . . . xi,n.

• The training set D consists of m training examples

• We denote the m× n matrix of attributes by X and the size-m column
vector of outputs from the data set by y.
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Supervised learning problem

• Let X denote the space of input values

• Let Y denote the space of output values

• Given a data set D ⊂ X × Y, find a function:

h : X → Y

such that h(x) is a “good predictor” for the value of y.

• h is called a hypothesis

• Problems are categorized by the type of output domain

– If Y = R, this problem is called regression
– If Y is a categorical variable (i.e., part of a finite discrete set), the

problem is called classification
– If Y is a more complex structure (eg graph) the problem is called

structured prediction
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.

This defines the input space X , and the output space Y.

(We will discuss this in detail later)

3. Choose a class of hypotheses/representations H .

4. ...
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Example: What hypothesis class should we pick?

x y
0.86 2.49
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44 0.87
-0.43 0.02
-1.10 -0.12
0.40 1.81
-0.96 -0.83
0.17 0.43
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Linear hypothesis

• Suppose y was a linear function of x:

hw(x) = w0 + w1x1(+ · · · )

• wi are called parameters or weights

• To simplify notation, we can add an attribute x0 = 1 to the other n
attributes (also called bias term or intercept term):

hw(x) =

n∑
i=0

wixi = wTx

where w and x are vectors of size n+ 1.

How should we pick w?
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Error minimization!

• Intuitively, w should make the predictions of hw close to the true values
y on the data we have

• Hence, we will define an error function or cost function to measure how
much our prediction differs from the ”true” answer

• We will pick w such that the error function is minimized

How should we choose the error function?
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Least mean squares (LMS)

• Main idea: try to make hw(x) close to y on the examples in the training
set

• We define a sum-of-squares error function

J(w) =
1

2

m∑
i=1

(hw(xi)− yi)2

(the 1/2 is just for convenience)

• We will choose w such as to minimize J(w)
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.

This defines the input space X , and the output space Y.

3. Choose a class of hypotheses/representations H .

4. Choose an error function (cost function) to define the best hypothesis

5. Choose an algorithm for searching efficiently through the space of
hypotheses.
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Notation reminder

• Consider a function f(u1, u2, . . . , un) : Rn 7→ R (for us, this will usually
be an error function)

• The partial derivative w.r.t. ui is denoted:

∂

∂ui
f(u1, u2, . . . , un) : Rn 7→ R

The partial derivative is the derivative along the ui axis, keeping all other
variables fixed.

• The gradient ∇f(u1, u2, . . . , un) : Rn 7→ Rn is a function which outputs
a vector containing the partial derivatives.
That is:

∇f =

〈
∂

∂u1
f,

∂

∂u2
f, . . . ,

∂

∂un
f

〉
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A bit of algebra

∂

∂wj
J(w) =

∂

∂wj

1

2

m∑
i=1

(hw(xi)− yi)2

=
1

2
· 2

m∑
i=1

(hw(xi)− yi)
∂

∂wj
(hw(xi)− yi)

=

m∑
i=1

(hw(xi)− yi)
∂

∂wj

(
n∑
l=0

wlxi,l − yi

)

=
m∑
i=1

(hw(xi)− yi)xi,j

Setting all these partial derivatives to 0, we get a linear system with (n+1)
equations and (n+ 1) unknowns.
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The solution

• Recalling some multivariate calculus:

∇wJ = ∇w

1

2
(Xw − y)

T
(Xw − y)

= ∇w

1

2
(w

T
X
T
Xw − y

T
Xw − w

T
X
T
y + y

T
y)

= X
T
Xw − X

T
y

• Setting gradient equal to zero:

XTXw −XTy = 0

⇒ XTXw = XTy

⇒ w = (XTX)−1XTy

• The inverse exists if the columns of X are linearly independent.
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Example: Data and best linear hypothesis
y = 1.60x+ 1.05

x

y
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Linear regression summary

• The optimal solution (minimizing sum-squared-error) can be computed
in polynomial time in the size of the data set.

• The solution is w = (XTX)−1XTy, where X is the data matrix
augmented with a column of ones, and y is the column vector of target
outputs.

• A very rare case in which an analytical, exact solution is possible
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Coming back to mean-squared error function...

• Good intuitive feel (small errors are ignored, large errors are penalized)

• Nice math (closed-form solution, unique global optimum)

• Geometric interpretation

• Any other interpretation?
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A probabilistic assumption

• Assume yi is a noisy target value, generated from a hypothesis hw(x)

• More specifically, assume that there exists w such that:

yi = hw(xi) + εi

where εi is random variable (noise) drawn independently for each xi
according to some Gaussian (normal) distribution with mean zero and
variance σ.

• How should we choose the parameter vector w?
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Bayes theorem in learning

Let h be a hypothesis and D be the set of training data.
Using Bayes theorem, we have:

P (h|D) =
P (D|h)P (h)

P (D)
,

where:

• P (h) is the prior probability of hypothesis h

• P (D) =
∫
h
P (D|h)P (h) is the probability of training data D

(normalization, independent of h)

• P (h|D) is the probability of h given D

• P (D|h) is the probability of D given h (likelihood of the data)
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Choosing hypotheses

• What is the most probable hypothesis given the training data?

• Maximum a posteriori (MAP) hypothesis hMAP :

hMAP = argmax
h∈H

P (h|D)

= argmax
h∈H

P (D|h)P (h)
P (D)

(using Bayes theorem)

= argmax
h∈H

P (D|h)P (h)

Last step is because P (D) is independent of h (so constant for the
maximization)

• This is the Bayesian answer (more in a minute)
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Maximum likelihood estimation

hMAP = argmax
h∈H

P (D|h)P (h)

• If we assume P (hi) = P (hj) (all hypotheses are equally likely a priori)
then we can further simplify, and choose the maximum likelihood (ML)
hypothesis:

hML = argmax
h∈H

P (D|h) = argmax
h∈H

L(h)

• Standard assumption: the training examples are independently identically
distributed (i.i.d.)
• This alows us to simplify P (D|h):

P (D|h) =
m∏
i=1

P (〈xi, yi〉|h) =
m∏
i=1

P (yi|xi;h)P (xi)
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The log trick

• We want to maximize:

L(h) =

m∏
i=1

P (yi|xi;h)P (xi)

This is a product, and products are hard to maximize!

• Instead, we will maximize logL(h)! (the log-likelihood function)

logL(h) =

m∑
i=1

logP (yi|xi;h) +
m∑
i=1

logP (xi)

• The second sum depends on D, but not on h, so it can be ignored in the
search for a good hypothesis
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Maximum likelihood for regression

• Adopt the assumption that:

yi = hw(xi) + εi,

where εi ∼ N (0, σ).

• The best hypothesis maximizes the likelihood of yi − hw(xi) = εi

• Hence,

L(w) =

m∏
i=1

1√
2πσ2

e
−1

2

(
yi−hw(xi)

σ

)2

because the noise variables εi are from a Gaussian distribution

COMP-652 and ECSE-608, Lecture 1 - January 5, 2017 34



Applying the log trick

logL(w) =

m∑
i=1

log

(
1√
2πσ2

e
−1

2
(yi−hw(xi))

2

σ2

)

=

m∑
i=1

log

(
1√
2πσ2

)
−

m∑
i=1

1

2

(yi − hw(xi))
2

σ2

Maximizing the right hand side is the same as minimizing:

m∑
i=1

1

2

(yi − hw(xi))
2

σ2

This is our old friend, the sum-squared-error function! (the constants that
are independent of h can again be ignored)
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Maximum likelihood hypothesis for least-squares
estimators

• Under the assumption that the training examples are i.i.d. and that we
have Gaussian target noise, the maximum likelihood parameters w are
those minimizing the sum squared error:

w∗ = argmin
w

m∑
i=1

(yi − hw(xi))
2

• This makes explicit the hypothesis behind minimizing the sum-squared
error

• If the noise is not normally distributed, maximizing the likelihood will not
be the same as minimizing the sum-squared error

• In practice, different loss functions are used depending on the noise
assumption
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A graphical representation for the data generation
process

w
eps

y

X X~P(X)

eps~N(0,sigma)
ML: fixed

but unknown

y=h_w(x)+eps
Deterministic

• Circles represent (random) variables)

• Arrows represent dependencies between variables

• Some variables are observed, others need to be inferred because they are
hidden (latent)

• New assumptions can be incorporated by making the model more
complicated
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Predicting recurrence time based on tumor size
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Is linear regression enough?

• Linear regression is too simple for most realistic problems

But it should be the first thing you try for real-valued outputs!

• Problems can also occur is XTX is not invertible.

• Two possible solutions:

1. Transform the data
– Add cross-terms, higher-order terms
– More generally, apply a transformation of the inputs from X to some

other space X ′, then do linear regression in the transformed space
2. Use a different hypothesis class (e.g. non-linear functions)

• Today we focus on the first approach
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Polynomial fits

• Suppose we want to fit a higher-degree polynomial to the data.
(E.g., y = w2x

2 + w1x
1 + w0.)

• Suppose for now that there is a single input variable per training sample.

• How do we do it?
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Answer: Polynomial regression

• Given data: (x1, y1), (x2, y2), . . . , (xm, ym).

• Suppose we want a degree-d polynomial fit.

• Let y be as before and let

X =


xd1 . . . x21 x1 1
xd2 . . . x22 x2 1
... ... ... ...
xdm . . . x2m xm 1


• Solve the linear regression Xw ≈ y.
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Example of quadratic regression: Data matrices

X =



0.75 0.86 1

0.01 0.09 1

0.73 −0.85 1

0.76 0.87 1

0.19 −0.44 1

0.18 −0.43 1

1.22 −1.10 1

0.16 0.40 1

0.93 −0.96 1

0.03 0.17 1


y =



2.49

0.83

−0.25
3.10

0.87

0.02

−0.12
1.81

−0.83
0.43


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XTX

XTX =

[
0.75 0.01 0.73 0.76 0.19 0.18 1.22 0.16 0.93 0.03
0.86 0.09 −0.85 0.87 −0.44 −0.43 −1.10 0.40 −0.96 0.17
1 1 1 1 1 1 1 1 1 1

]
×



0.75 0.86 1
0.01 0.09 1
0.73 −0.85 1
0.76 0.87 1
0.19 −0.44 1
0.18 −0.43 1
1.22 −1.10 1
0.16 0.40 1
0.93 −0.96 1
0.03 0.17 1


=

 4.11 −1.64 4.95
−1.64 4.95 −1.39
4.95 −1.39 10


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XTy

XTy =

[
0.75 0.01 0.73 0.76 0.19 0.18 1.22 0.16 0.93 0.03
0.86 0.09 −0.85 0.87 −0.44 −0.43 −1.10 0.40 −0.96 0.17
1 1 1 1 1 1 1 1 1 1

]
×



2.49
0.83
−0.25
3.10
0.87
0.02
−0.12
1.81
−0.83
0.43


=

 3.60
6.49
8.34


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Solving for w

w = (XTX)−1XTy

=

[
4.11 −1.64 4.95

−1.64 4.95 −1.39
4.95 −1.39 10

]−1 [
3.60

6.49

8.34

]
=

[
0.68

1.74

0.73

]

So the best order-2 polynomial is y = 0.68x2 + 1.74x+ 0.73.
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Linear function approximation in general

• Given a set of examples 〈xi, yi〉i=1...m, we fit a hypothesis

hw(x) =

K−1∑
k=0

wkφk(x) = wTφ(x)

where φk are called basis functions

• The best w is considered the one which minimizes the sum-squared error
over the training data:

m∑
i=1

(yi − hw(xi))
2

• We can find the best w in closed form:

w = (ΦTΦ)−1ΦTy

or by other methods (e.g. gradient descent - as will be seen later)
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Linear models in general

• By linear models, we mean that the hypothesis function hw(x) is a linear
function of the parameters w
• This does not mean the hw(x) is a linear function of the input vector x

(e.g., polynomial regression)
• In general

hw(x) =

K−1∑
k=0

wkφk(x) = wTφ(x)

where φk are called basis functions
• Usually, we will assume that φ0(x) = 1,∀x, to create a bias term
• The hypothesis can alternatively be written as:

hw(x) = Φw

where Φ is a matrix with one row per instance; row j contains φ(xj).
• Basis functions are fixed
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Example basis functions: Polynomials

−1 0 1
−1

−0.5

0

0.5

1

φk(x) = xk

“Global” functions: a small change in x may cause large change in the
output of many basis functions
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Example basis functions: Gaussians

−1 0 1
0   

0.25

0.5 

0.75

1   

φk(x) = exp

(
x− µk
2σ2

)
• µk controls the position along the x-axis
• σ controls the width (activation radius)
• µk, σ fixed for now (later we discuss adjusting them)
• Usually thought as “local” functions: if σ is relatively small, a small

change in x only causes a change in the output of a few basis functions
(the ones with means close to x)
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Example basis functions: Sigmoidal

−1 0 1
0

0.25

0.5

0.75

1

φk(x) = σ

(
x− µk
s

)
where σ(a) =

1

1 + exp(−a)

• µk controls the position along the x-axis

• s controls the slope

• µk, s fixed for now (later we discuss adjusting them)

• “Local” functions: a small change in x only causes a change in the
output of a few basis (most others will stay close to 0 or 1)
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Order-2 fit

x

y

Is this a better fit to the data?

COMP-652 and ECSE-608, Lecture 1 - January 5, 2017 51



Order-3 fit

x

y

Is this a better fit to the data?
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Order-4 fit

x

y

Is this a better fit to the data?
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Order-5 fit

x

y

Is this a better fit to the data?
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Order-6 fit

x

y

Is this a better fit to the data?
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Order-7 fit

x

y

Is this a better fit to the data?
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Order-8 fit

x

y

Is this a better fit to the data?
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Order-9 fit

x

y

Is this a better fit to the data?
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Overfitting

• A general, HUGELY IMPORTANT problem for all machine learning
algorithms

• We can find a hypothesis that predicts perfectly the training data but
does not generalize well to new data

• E.g., a lookup table!

• We are seeing an instance here: if we have a lot of parameters, the
hypothesis ”memorizes” the data points, but is wild everywhere else.

• Next time: defining overfitting formally, and finding ways to avoid it
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