Lecture 9: Hidden Markov Models

- Working with time series data
- Hidden Markov Models
- Inference and learning problems
- Forward-backward algorithm
- Baum-Welch algorithm for parameter fitting

Time series/sequence data

- Very important in practice:
- Speech recognition
- Text processing (taking into account the sequence of words)
- DNA analysis
- Heart-rate monitoring
- Financial market forecasting
- Mobile robot sensor processing
- ...
- Does this fit the machine learning paradigm as described so far?
- The sequences are not all the same length (so we cannot just assume one attribute per time step)
- The data at each time slice/index is not independent
- The data distribution may change over time

Example: Robot position tracking ${ }^{1}$

Prob

Sensory model: never more than 1 mistake
Motion model: may not execute action with small prob.

[^0]
Example (II)

Prob

$\mathrm{t}=1$

Example (III)

Prob

$t=3$

Example (IV)

Example (V)

Hidden Markov Models (HMMs)

- Hidden Markov Models (HMMs) are used for situations in which:
- The data consists of a sequence of observations
- The observations depend (probabilistically) on the internal state of a dynamical system
- The true state of the system is unknown (i.e., it is a hidden or latent variable)
- There are numerous applications, including:
- Speech recognition
- Robot localization
- Gene finding
- User modelling
- Fetal heart rate monitoring
- ..

How an HMM works

- Assume a discrete clock $t=0,1,2, \ldots$
- At each t, the system is in some internal (hidden) state $S_{t}=s$ and an observation $O_{t}=o$ is emitted (stochastically) based only on s (Random variables are denoted with capital letters)
- The system transitions (stochastically) to a new state S_{t+1}, according to a probability distribution $P\left(S_{t+1} \mid S_{t}\right)$, and the process repeats.
- This interaction can be represented as a graphical model (recall that each circle is a random variable, S_{t} or O_{t} in this case):

- Markov assumption: $S_{t+1} \Perp S_{t-1} \mid S_{t}$ (future is independent of the past given the present)

HMM definition

- An HMM consists of:
- A set of states \mathcal{S} (usually assumed to be finite)
- A start state distribution $P\left(S_{1}=s\right), \forall s \in S$ This annotates the top left node in the graphical model
- State transition probabilities: $P\left(S_{t+1}=s^{\prime} \mid S_{t}=s\right), \forall s, s^{\prime} \in S$ These annotate the right-going arcs in the graphical model
- A set of observations \mathcal{O} (often assumed to be finite)
- Observation emission probabilities $P\left(O_{t}=o \mid S_{t}=s\right), \forall s \in S, o \in \mathcal{O}$. These annotate the down-going arcs above
- The model is homogeneous: the transition and emission probabilities do not depend on time, only on the states/observations

Finite HMMs

- If \mathcal{S} and \mathcal{O} are finite, the initial state distribution can be represented as a vector \mathbf{b}_{0} of size $|\mathcal{S}|$
- Transition probabilities form a matrix \mathbf{T} of size $|\mathcal{S}| \times|\mathcal{S}|$; each row i is the multinomial of the next state given that the current state is i
- Similarly, the emission probabilities form a matrix \mathbf{Q} of size $|\mathcal{S}| \times|\mathcal{O}|$; each row is a multinomial distribution over the observations, given the state.
- Together, $\mathbf{b}_{0}, \mathbf{T}$ and \mathbf{Q} form the model of the HMM.
- If \mathcal{O} is not not finite, the multinomial can be replaced with an appropriate parametric distribution (e.g. Normal)
- If \mathcal{S} is not finite, the model is usually not called an HMM, and different ways of expressing the distributions may be used, e.g
- Kalman filter
- Extended Kalman filter
- ...

Examples

- Gene regulation
- $\mathcal{O}=\{A, C, G, T\}$
- $\mathcal{S}=\{$ Gene, Transcription factor binding site, Junk DNA, $\ldots\}$
- Speech processing
- $\mathcal{O}=$ speech signal
- $\mathcal{S}=$ word or phoneme being uttered
- Text understanding
- $\mathcal{O}=$ words
- $\mathcal{S}=$ topic (e.g. sports, weather, etc)
- Robot localization
- $\mathcal{O}=$ sensor readings
- $\mathcal{S}=$ discretized position of the robot

HMM problems

- How likely is a given observation sequence, $o_{0}, o_{1}, \ldots o_{T}$?
I.e., compute $P\left(O_{1}=o_{1}, O_{2}=o_{2}, \ldots O_{T}=o_{T}\right)$
- Given an observation sequence, what is the probability distribution for the current state?
I.e., compute $P\left(S_{T}=s \mid O_{1}=o_{1}, O_{2}=o_{2}, \ldots O_{T}=o_{T}\right)$
- What is the most likely state sequence for explaining a given observation sequence? ("Decoding problem")

$$
\arg \max _{s_{1}, \ldots s_{T}} P\left(S_{1}=s_{1}, \ldots S_{T}=s_{T} \mid O_{1}=o_{1}, \ldots O_{T}=o_{T}\right)
$$

- Given one (or more) observation sequence(s), compute the model parameters

Computing the probability of an observation sequence

- Very useful in learning for:
- Seeing if an observation sequence is likely to be generated by a certain HMM from a set of candidates (often used in classification of sequences)
- Evaluating if learning the model parameters is working
- How to do it: belief propagation

Decomposing the probability of an observation sequence

$$
\begin{aligned}
P\left(o_{1}, \ldots o_{T}\right) & =\sum_{s_{1}, \ldots s_{T}} P\left(o_{1}, \ldots o_{T}, s_{1}, \ldots s_{T}\right) \\
& =\sum_{s_{1}, \ldots s_{T}} P\left(s_{1}\right)\left(\prod_{t=2}^{T} P\left(s_{t} \mid s_{t-1}\right)\right)\left(\prod_{t=1}^{T} P\left(o_{t} \mid s_{t}\right)\right. \text { (using the model) } \\
& =\sum_{s_{T}} P\left(o_{T} \mid s_{T}\right) \sum_{s_{1}, \ldots s_{T-1}} P\left(s_{T} \mid s_{T-1}\right) P\left(s_{1}\right)\left(\prod_{t=2}^{T-1} P\left(s_{t} \mid s_{t-1}\right)\right)\left(\prod_{t=1}^{T-1} P\left(o_{t} \mid s_{t}\right)\right)
\end{aligned}
$$

This form suggests a dynamic programming solution!

Dynamic programming idea

- By inspection of the previous formula, note that we actually wrote:

$$
\begin{aligned}
P\left(o_{1}, o_{2}, \ldots o_{T}\right) & =\sum_{s_{T}} P\left(o_{1}, o_{2}, \ldots o_{T}, s_{T}\right) \\
& =\sum_{s_{T}} P\left(o_{T} \mid s_{T}\right) \sum_{s_{T-1}} P\left(s_{T} \mid s_{T-1}\right) P\left(o_{1}, \ldots o_{T-1}, s_{T-1}\right)
\end{aligned}
$$

- The variables for the dynamic programming will be $P\left(o_{1}, o_{2}, \ldots o_{t}, s_{t}\right)$.

The forward algorithm

- Given an HMM model and an observation sequence $o_{1}, \ldots o_{T}$, define:

$$
\alpha_{t}(s)=P\left(o_{1}, \ldots o_{t}, S_{t}=s\right)
$$

- We can put these variables together in a vector α_{t} of size \mathcal{S}.
- In particular,

$$
\alpha_{1}(s)=P\left(o_{1}, S_{1}=s\right)=P\left(o_{1} \mid S_{1}=s\right) P\left(S_{1}=s\right)=q_{s o_{1}} b_{0}(s)
$$

- For $t=2, \ldots T, \alpha_{t}(s)=p_{s o_{t}} \sum_{s^{\prime}} p_{s^{\prime} s} \alpha_{t-1}\left(s^{\prime}\right)$
- The solution is then

$$
P\left(o_{1}, \ldots o_{T}\right)=\sum_{s} \alpha_{T}(s)
$$

Example

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

- Consider the 5-state hallway shown above
- The start state is always state 3
- The observation is the number of walls surrounding the state (2 or 3)
- There is a 0.5 probability of staying in the same state, and 0.25 probability of moving left or right; if the movement would lead to a wall, the state is unchanged.

	start	to state				see walls					
state		1	2	3	4	5	0	1	2	3	4
1	0.00	0.75	0.25	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
2	0.00	0.25	0.50	0.25	0.00	0.00	0.00	0.00	1.00	0.00	0.00
3	1.00	0.00	0.25	0.50	0.25	0.00	0.00	0.00	1.00	0.00	0.00
4	0.00	0.00	0.00	0.25	0.50	0.25	0.00	0.00	1.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.25	0.75	0.00	0.00	0.00	1.00	0.00

Example: Forward algorithm

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

Time t	1
Obs	2
$\alpha_{t}(1)$	0.00000
$\alpha_{t}(2)$	0.00000
$\alpha_{t}(3)$	1.00000
$\alpha_{t}(4)$	0.00000
$\alpha_{t}(5)$	0.00000

Example: Forward algorithm

Time t	1	2
Obs	2	2
$\alpha_{t}(1)$	0.00000	0.00000
$\alpha_{t}(2)$	0.00000	0.25000
$\alpha_{t}(3)$	1.00000	0.50000
$\alpha_{t}(4)$	0.00000	0.25000
$\alpha_{t}(5)$	0.00000	0.00000

Example: Forward algorithm: two different observation sequences

Example: Forward algorithm

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

Time t	1	2	3	4	5	6	7	8	9	10
Obs	2	2	3	2	3	2	2	2	3	3
$\alpha_{t}(1)$	0.0	0.00	0.0625	0.00000	0.00391	0.00000	0.00000	0.00000	0.00009	0.00007
$\alpha_{t}(2)$	0.0	0.25	0.0000	0.01562	0.00000	0.00098	0.00049	0.00037	0.00000	0.00000
$\alpha_{t}(3)$	1.0	0.50	0.0000	0.00000	0.00000	0.00000	0.00049	0.00049	0.00000	0.00000
$\alpha_{t}(4)$	0.0	0.25	0.0000	0.01562	0.00000	0.00098	0.00049	0.00037	0.00000	0.00000
$\alpha_{t}(5)$	0.0	0.00	0.0625	0.00000	0.00391	0.00000	0.00000	0.00000	0.00009	0.00007

- Note that probabilities decrease with the length of the sequence
- This is due to the fact that we are looking at a joint probability; this phenomenon would not happen for conditional probabilities
- This can be a source of numerical problems for very long sequences.

Conditional probability queries in an HMM

- Because the state is never observed, we are often interested to infer its conditional distribution from the observations.
- There are several interesting types of queries:
- Monitoring (filtering, belief state maintenance): what is the current state, given the past observations?
- Prediction: what will the state be in several time steps, given the past observations?
- Smoothing (hindsight): update the state distribution of past time steps, given new data
- Most likely explanation: compute the most likely sequence of states that could have caused the observation sequence

Belief state monitoring

- Given an observation sequence $o_{1}, \ldots o_{t}$, the belief state of an HMM at time step t is defined as:

$$
b_{t}(s)=P\left(S_{t}=s \mid o_{1}, \ldots o_{t}\right)
$$

Note that if \mathcal{S} is finite b_{t} is a probability vector of size \mathcal{S} (so its elements sum to 1)

- In particular,
$b_{1}(s)=P\left(S_{1}=s \mid o_{1}\right)=\frac{P\left(S_{1}=s, o_{1}\right)}{P\left(o_{1}\right)}=\frac{P\left(S_{1}=s, o_{1}\right)}{\sum_{s^{\prime}} P\left(S_{1}=s^{\prime}, o_{1}\right)}=\frac{b_{0}(s) q_{s o_{1}}}{\sum_{s^{\prime}} b_{0}\left(s^{\prime}\right) q_{s^{\prime} o_{1}}}$
- To compute this, we would assign:

$$
b_{1}(s) \leftarrow b_{0}(s) q_{s o_{1}}
$$

and then normalize it (dividing by $\sum_{s} b_{1}(s)$)

Updating the belief state after a new observation

- Suppose we have $b_{t}(s)$ and we receive a new observation o_{t+1}. What is b_{t+1} ?

$$
b_{t+1}(s)=P\left(S_{t+1}=s \mid o_{1}, \ldots o_{t} o_{t+1}\right)=\frac{P\left(S_{t+1}=s, o_{1}, \ldots o_{t}, o_{t+1}\right)}{P\left(o_{1}, \ldots o_{t}, o_{t+1}\right)}
$$

- The denominator is just a normalization constant, so we will work on the numerator

Updating the belief state after a new observation (II)

$$
\begin{aligned}
& b_{t+1}(s) \propto P\left(S_{t+1}=s, o_{1}, \ldots o_{t}, o_{t+1}\right) \\
& =P\left(o_{t+1} \mid S_{t+1}=s, o_{1}, \ldots o_{t}\right) \sum_{s^{\prime}} P\left(S_{t+1}=s \mid S_{t}=s^{\prime}, o_{1}, \ldots o_{t}\right) P\left(S_{t}=s^{\prime}, o_{1}, \ldots o_{t}\right) \\
& =P\left(o_{t+1} \mid S_{t+1}=s\right) \sum_{s^{\prime}} P\left(S_{t+1}=s \mid S_{t}=s^{\prime}\right) P\left(S_{t}=s^{\prime}, o_{1}, \ldots o_{t}\right) \text { (cond. independence) } \\
& \propto P\left(o_{t+1} \mid S_{t+1}=s\right) \sum_{s^{\prime}} P\left(S_{t+1}=s \mid S_{t}=s^{\prime}\right) P\left(S_{t}=s^{\prime} \mid o_{1}, \ldots o_{t}\right) \\
& =q_{s o_{t+1}} \sum_{s^{\prime}} b_{t}\left(s^{\prime}\right) p_{s^{\prime} s} \text { (using notation) }
\end{aligned}
$$

Algorithmically, at every time step t, update:

$$
b_{t+1}(s) \leftarrow q_{s o_{t+1}} \sum_{s^{\prime}} b_{t}\left(s^{\prime}\right) p_{s^{\prime} s}, \quad \text { then normalize }
$$

Computing state probabilities in general

- If we know the model parameters and an observation sequence, how do we compute $P\left(S_{t}=s \mid o_{1}, o_{2}, \ldots o_{T}\right)$?

$$
\begin{aligned}
P\left(S_{t}=s \mid o_{1}, \ldots o_{T}\right) & =\frac{P\left(o_{1}, \ldots o_{T}, S_{t}=s\right)}{P\left(o_{1}, \ldots o_{T}\right)} \\
& =\frac{P\left(o_{t+1}, \ldots o_{T} \mid o_{1}, \ldots o_{t}, S_{t}=s\right) P\left(o_{1}, \ldots o_{t}, S_{t}=s\right)}{P\left(o_{1}, \ldots o_{T}\right)} \\
& =\frac{P\left(o_{t+1}, \ldots o_{T} \mid S_{t}=s\right) P\left(o_{1}, \ldots o_{t}, S_{t}=s\right)}{P\left(o_{1}, \ldots o_{T}\right)}
\end{aligned}
$$

- The denominator is a normalization constant and second factor in the numerator can be computed using the forward algorithm (it is $\alpha_{t}(s)$)
- We now compute the first factor

Computing state probabilities (II)

$$
\begin{aligned}
& P\left(o_{t+1}, \ldots o_{T} \mid S_{t}=s\right)=\sum_{s^{\prime}} P\left(o_{t+1}, \ldots o_{T}, S_{t+1}=s^{\prime} \mid S_{t}=s\right) \\
& =\sum_{s^{\prime}} P\left(o_{t+1}, \ldots o_{T} \mid S_{t+1}=s^{\prime}, S_{t}=s\right) P\left(S_{t+1}=s^{\prime} \mid S_{t}=s\right) \\
& =\sum_{s^{\prime}} P\left(o_{t+1} \mid S_{t+1}=s^{\prime}\right) P\left(o_{t+2}, \ldots o_{T} \mid S_{t+1}=s^{\prime}\right) P\left(S_{t+1}=s^{\prime} \mid S_{t}=s\right) \\
& =\sum_{s^{\prime}} p_{s s^{\prime}} q_{s^{\prime} o_{t+1}} P\left(o_{t+2}, \ldots o_{T} \mid S_{t+1}=s^{\prime}\right) \text { (using notation) }
\end{aligned}
$$

- Define $\beta_{t}(s)=P\left(o_{t+1}, \ldots o_{T} \mid S_{t}=s\right)$
- Then we can compute the β_{t} by the following (backwards-in-time) dynamic program:

$$
\begin{aligned}
\beta_{T}(s) & =1 \\
\beta_{t}(s) & =\sum_{s^{\prime}} p_{s s^{\prime}} q_{s^{\prime} o_{t+1}} \beta_{t+1}\left(s^{\prime}\right) \text { for } t=T-1, T-2, T-3, \ldots
\end{aligned}
$$

The forward-backward algorithm

- Given the observation sequence, $o_{1}, \ldots o_{T}$ we can compute the probability of any state at any time as follows:

1. Compute all the $\alpha_{t}(s)$, using the forward algorithm
2. Compute all the $\beta_{t}(s)$, using the backward algorithm
3. For any $s \in S$ and $t \in\{1, \ldots T\}$:

$$
P\left(S_{t}=s \mid o_{1}, \ldots o_{T}\right)=\frac{P\left(o_{1}, \ldots o_{t}, S_{t}=s\right) P\left(o_{t+1}, \ldots o_{T} \mid S_{t}=s\right)}{P\left(o_{1}, \ldots o_{T}\right)}=\frac{\alpha_{t}(s) \beta_{t}(s)}{\sum_{s^{\prime}} \alpha_{T}\left(s^{\prime}\right)}
$$

- The complexity of the algorithm is $O(|\mathcal{S}| T)$.
- A similar dynamic programming approach can be used to compute the most likely state sequence, given a sequence of observations:

$$
\arg \max _{s_{1}, \ldots s_{T}} P\left(s_{1}, \ldots s_{T} \mid o_{1}, \ldots o_{T}\right)
$$

This is called the Viterbi algorithm (see Rabiner tutorial)

Example: Forward-backward algorithm

Time t	1	2	3	4	5	6
Obs	2	2	3	2	3	3
$\beta_{t}(1)$	0.00293	0.03516	0.04688	0.56250	0.75000	1.00000
$\beta_{t}(2)$	0.00586	0.01172	0.09375	0.18750	0.25000	1.00000
$\beta_{t}(3)$	0.00586	0.00000	0.09375	0.00000	0.00000	1.00000
$\beta_{t}(4)$	0.00586	0.01172	0.09375	0.18750	0.25000	1.00000
$\beta_{t}(5)$	0.00293	0.03516	0.04688	0.56250	0.75000	1.00000

Example: Forward-backward algorithm

Time t	1	2	3	4	5	6
Obs	2	2	3	2	3	3
$\alpha_{t}(1)$	0.00000	0.00000	0.06250	0.00000	0.00391	0.00293
$\alpha_{t}(2)$	0.00000	0.25000	0.00000	0.01562	0.00000	0.00000
$\alpha_{t}(3)$	1.00000	0.50000	0.00000	0.00000	0.00000	0.00000
$\alpha_{t}(4)$	0.00000	0.25000	0.00000	0.01562	0.00000	0.00000
$\alpha_{t}(5)$	0.00000	0.00000	0.06250	0.00000	0.00391	0.00293

Example: Forward-backward algorithm

Time t	1	2	3	4	5	6
Obs	2	2	3	2	3	3
$P\left(S_{t}=1 \mid o_{1}, \ldots o_{6}\right)$	0.0	0.0	0.5	0.0	0.5	0.5
$P\left(S_{t}=2 \mid o_{1}, \ldots o_{6}\right)$	0.0	0.5	0.0	0.5	0.0	0.0
$P\left(S_{t}=3 \mid o_{1}, \ldots o_{6}\right)$	1.0	0.0	0.0	0.0	0.0	0.0
$P\left(S_{t}=4 \mid o_{1}, \ldots o_{6}\right)$	0.0	0.5	0.0	0.5	0.0	0.0
$P\left(S_{t}=5 \mid o_{1}, \ldots o_{6}\right)$	0.0	0.0	0.5	0.0	0.5	0.5

Learning HMM parameters

- Suppose we have access to observation sequences $o_{1}, \ldots o_{T}$, and we know the state set \mathcal{S}. How can we find the parameters $\lambda=\left(p_{s s^{\prime}}, q_{s o}, b_{0}(s)\right)$ of the HMM that generated the observations?
- Usual optimization criterion: maximize the likelihood of the observed data (we focus on this)
- Alternatively, in the Bayesian view, maximize the posterior probability of the observed data, given the prior over parameters
- Two main approaches:
- Baum-Welch algorithm (an instance of Expectation-Maximization for the special case of HMM)
- Cheat! Get complete trajectories, $s_{1}, o_{1}, s_{2}, o_{2}, \ldots s_{T}, o_{T}$ and maximize $P\left(s_{1}, o_{1}, \ldots s_{T}, o_{T} \mid \lambda\right)$
- Some other, direct optimization approaches are also possible with complete data, but less popular

Learning with complete state information

- In many applications, we can make special arrangements to obtain state information, at least for a few trajectories. For example:
- In speech recognition, human listeners can determine exactly what word or phoneme is being spoken at each moment
- In gene identification, biological experiments can verify what parts of the DNA are actually genes
- In robot localization, we can collect data in a controlled environment where the robot's location is verified by other means (e.g., tape measure)
- Thus, at some extra (possibly high) cost, we can often obtain trajectories that include the true system state: $s_{1}, o_{1}, \ldots s_{T}, o_{T}$.
- It is much, much, much easier to train HMMs with such data than with observation data alone!
- If there is little complete data, this approach can be used to initialize the parameters before Baum-Welch

Maximum likelihood learning with complete data in finite HMM

- Suppose that we have a finite state set \mathcal{S} and observation set \mathcal{O}
- Suppose we have a set of m trajectories, with the $i^{t h}$ trajectory of the form:

$$
\tau^{i}=\left(s_{1}^{i}, o_{1}^{i}, s_{2}^{i}, o_{2}^{i}, \ldots s_{T^{i}}^{i}, o_{T^{i}}^{i}\right)
$$

- Maximum likelihood estimates of the HMM parameters are:

$$
\begin{aligned}
b_{0}(s) & =\frac{\# \text { trajectories starting at } s}{m}=\frac{\left|\left\{i: s_{1}^{i}=s\right\}\right|}{m} \\
p_{s s^{\prime}} & =\frac{\text { number of } s \text {-to- } s^{\prime} \text { transitions }}{\text { number of occurrences of } s}=\frac{\mid\left\{(i, t): s_{t}^{i}=s \text { and } s_{t+1}^{i}=s^{\prime}\right\} \mid}{\mid\left\{(i, t): s_{t}^{i}=s \text { and } t<T^{i}\right\} \mid} \\
q_{s o} & =\frac{\text { number of times } o \text { was emitted in } s}{\text { number of occurrences of } s}=\frac{\mid\left\{(i, t): s_{t}^{i}=s \text { and } o_{t}^{i}=o\right\} \mid}{\left|\left\{(i, t): s_{t}^{i}=s\right\}\right|}
\end{aligned}
$$

What if the observation space is infinite?

- An adequate parametric representation is chosen for the observation distribution q_{s} at each discrete state s
E.g. Gaussian, exponential etc.
- The parameters of q_{s} are then learned to maximize the likelihood of the observation data associated with s
- E.g. for a Gaussian, we can compute the mean and covariance of the observation vectors seen from each state s.

Example

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

- Data: one state-observation trajectory of 100 time steps
- Maximum likelihood model:

	start	to state					see walls				
state		1	2	3	4	5	0	1	2	3	4
1	0.00	0.64	0.36	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
2	0.00	0.18	0.59	0.23	0.00	0.00	0.00	0.00	1.00	0.00	0.00
3	1.00	0.00	0.25	0.35	0.40	0.00	0.00	0.00	1.00	0.00	0.00
4	0.00	0.00	0.00	0.20	0.63	0.17	0.00	0.00	1.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.45	0.55	0.00	0.00	0.00	1.00	0.00

- Note that the emission model is correct but the transition model still has errors compared to the true one, due to the limited amount of data
- In the limit, as $t \rightarrow \infty$, the learned model would converge to the true parameters

Maximum likelihood learning without state information

- Suppose we know \mathcal{O} and \mathcal{S} and they are finite
- Suppose we have a single observation trajectory $o_{1}, o_{2}, \ldots o_{T}$
- We want to solve the following optimization problem:

$$
\begin{aligned}
\max & P\left(o_{1}, \ldots o_{T}\right) \\
\text { w.r.t. } & b_{0}(s), p_{s s^{\prime}}, q_{s o} \\
\text { s.t. } & b_{0}(s), p_{s s^{\prime}}, q_{s o} \in[0,1] \\
& \sum_{s} b_{0}(s)=1 \\
& \sum_{s^{\prime}} p_{s s^{\prime}}=1, \forall s \\
& \sum_{o} q_{s o}=1, \forall s
\end{aligned}
$$

Learning without state information: Baum-Welch

- The Baum-Welch algorithm is an Expectation-Maximization (EM) algorithm for fitting HMM parameters.
- Recall that EM is a general approach for dealing with missing data, by alternating two steps:
- "Fill in" the missing values based on the current model parameters
- Re-compute the model parameters to maximize the likelihood of the completed data
- For HMMs, the missing data is the state sequence, so we start with an initial guess about the model parameters and alternate the following steps:
- Estimate the probability of the state sequence given the observation sequence (using forward-backard algorithm)
- Fit new model parameters based on the completed data (using the maximum likelihood algorithm)

Baum-Welch algorithm

- Given observation sequence $o_{1}, \ldots o_{T}$ and initial parameters $\lambda=$ $\left(b_{0}(s), p_{s s^{\prime}}, q_{s o}\right)$
- Repeat the following steps until convergence:

- E-Step:

1. For every s, t compute: $P\left(S_{t}=s \mid o_{1}, \ldots o_{T}\right)$
2. For every s, s^{\prime}, t compute: $P\left(S_{t}=s, S_{t+1}=s^{\prime} \mid o_{1}, \ldots o_{T}\right)$

- M-Step:

$$
\begin{aligned}
b_{0}(s) & =P\left(S_{1}=s \mid o_{1}, \ldots o_{T}\right) \\
p_{s s^{\prime}} & =\frac{\text { Expected } \# \text { of } s \rightarrow s^{\prime}}{\text { Expected } s \text { occurences }}=\frac{\sum_{t<T} P\left(S_{t}=s, S_{t+1}=s^{\prime} \mid o_{1}, \ldots o_{T}\right)}{\sum_{t<T} P\left(S_{t}=s \mid o_{1}, \ldots o_{T}\right)} \\
q_{s o} & =\frac{\text { Expected } \# o \text { was emitted from } s}{\text { Expected } s \text { occurrences }}=\frac{\sum_{t: o_{t}=o} P\left(S_{t}=s \mid o_{1}, \ldots o_{T}\right)}{\sum_{t} P\left(S_{t}=s \mid o_{1}, \ldots o_{T}\right)}
\end{aligned}
$$

Details of E-Step

- $P\left(S_{t}=s \mid o_{1}, \ldots o_{T}\right)$ is computed by the forward-backward algorithm.
- Recall: $P\left(S_{t}=s, S_{t+1}=s^{\prime} \mid o_{1}, \ldots o_{T}\right)=\frac{P\left(S_{t}=s, S_{t+1}=s^{\prime}, o_{1}, \ldots o_{T}\right)}{P\left(o_{1}, \ldots o_{T}\right)}$ where the denominator is $\sum_{s} \alpha_{T}(s)$.
- Working on the numerator:

$$
\begin{aligned}
& P\left(S_{t}=s, S_{t+1}=s^{\prime}, o_{1}, \ldots o_{T}\right) \\
& \quad=P\left(S_{t}=s, o_{1}, \ldots o_{t}\right) P\left(S_{t+1}=s^{\prime}, o_{t+1}, \ldots o_{T} \mid S_{t}=s, o_{1}, \ldots o_{t}\right) \\
& \quad=\alpha_{t}(s) P\left(S_{t+1}=s^{\prime} \mid S_{t}=s\right) P\left(o_{t+1}, \ldots o_{T} \mid S_{t+1}=s^{\prime}\right) \\
& \quad=\alpha_{t}(s) p_{s s^{\prime}} P\left(o_{t+1} \mid S_{t+1}=s^{\prime}\right) P\left(o_{t+1}, \ldots o_{T} \mid S_{t+1}=s^{\prime}\right) \\
& \quad=\alpha_{t}(s) p_{s s^{\prime}} q_{s^{\prime}} o_{t+1} \beta_{t+1}\left(s^{\prime}\right)
\end{aligned}
$$

where the α 's and β 's are from the forward-backward algorithm.

Remarks on Baum-Welch

- Each iteration increases $P\left(o_{1}, \ldots o_{T}\right)$ (since this is EM)
- Each iteration is computationally efficient:
- E-step: $O(|\mathcal{S}| T)$ for forward-backward, plus $O\left(|\mathcal{S}|^{2} T\right)$ for the second estimation
- M-step: $O\left(|\mathcal{S}|^{2} T\right)$ plus $O(|\mathcal{S} \| \mathcal{O}| T)$ for parameter estimation (given that we already have the $\alpha \mathrm{s}$ and $\beta \mathrm{s}$)
- Iterations are stopped when the parameters do not change much (or after a fixed amount of time)
- The algorithm converges to a local maximum of the likelihood
- There can be many, many local maxima that are not globally optimal
- Reasonable initial guesses for parameters (obtained from prior knowledge, or from learning with a small amount of complete data) are a big help, but not a guarantee for good performance

Example: Baum-Welch from correct parameters

Correct model:

	start	to state									
state		1	2	3	4	5	0	1	2	3	4
1	0.00	0.75	0.25	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
2	0.00	0.25	0.50	0.25	0.00	0.00	0.00	0.00	1.00	0.00	0.00
3	1.00	0.00	0.25	0.50	0.25	0.00	0.00	0.00	1.00	0.00	0.00
4	0.00	0.00	0.00	0.25	0.50	0.25	0.00	0.00	1.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.25	0.75	0.00	0.00	0.00	1.00	0.00

Likelihood of data: 3.8645e-19

Example: Baum-Welch from equal initial parameters (uniform initial distributions)

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

- Learned model:

	start	to state					see walls				
state		1	2	3	4	5	0	1	2	3	4
1	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.77	0.23	0.00
2	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.77	0.23	0.00
3	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.77	0.23	0.00
4	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.77	0.23	0.00
5	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.77	0.23	0.00

- Note that the learned model is really different from the true model
- Likelihood of data: 3.7977e-24

Example: Baum-Welch from randomly chosen initial parameters

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

- Learned model:

	start	to state				see walls					
state		1	2	3	4	5	0	1	2	3	4
1	0.00	0.07	0.04	0.16	0.00	0.73	0.00	0.00	0.00	1.00	0.00
2	1.00	0.00	0.22	0.31	0.47	0.00	0.00	0.00	1.00	0.00	0.00
3	0.00	0.00	0.79	0.21	0.00	0.00	0.00	0.00	1.00	0.00	0.00
4	0.00	0.48	0.05	0.47	0.00	0.00	0.00	0.00	1.00	0.00	0.00
5	0.00	0.00	0.00	0.01	0.59	0.40	0.00	0.00	0.00	1.00	0.00

- Note that the emission model is learned correctly, but the transition model is still quite different from the true model
- Likelihood of data: $1.7665 \mathrm{e}-17$

The moral of the experiments

- The solution provided by EM can be arbitrarily different from the true model. Hence, interpreting the parameters learned by EM as having a meaning for the true problem is wrong
- Even when starting with the true model, EM may converge to something different
- Some of the solutions provided by EM are useless (e.g. when starting with uniform parameters)
- Choosing parameters at random is better than making them all equal, because it helps break symmetry
- A model with better likelihood is not necessarily closer to the true model (see training from the true model vs. training from a randomly chosen model)
- In general, in order to get EM to work, you either need a good initial model, or you need to do lots of random restarts

Learning the HMM structure

- All algorithms so far assume that we know the number of states
- If the number of states is not known, we can guess it and then learn parameters
- Note that the likelihood of the data usually increases with more states
- As a result, models with lots of states need to be penalized (using regularization, minimum description length or a Bayesian prior over the number of states)
- If \mathcal{S} is unknown, the algorithms work a lot worse

Application: Detection of DNA regions

- Observation: DNA sequence
- Hidden state: gene, transcription factor, protein-coding region...
- Learning: EM
- Validation often against known regions, and then through biological experiment

Application: Music composition

- Observations: notes played
- States: chords
- Learning: music by one composer, labelled with correct chords, used for maximum likelihood learning
- Model "composes" by sampling chords and notes from the model
- If successful, new music is generated "in the style" of the composer

Application: Speech recognition

- Observations: sound wave readings
- States: phonemes
- Learning: use labelled data to initialize the model, then EM with a much larger set of speakers to further adapt the parameters
- Transcription system: use inference to determine the most likely state sequence, which provides the transcription of the word
- HMMs are the state-of-art speech recognition technology
- Can be coupled with classification, if desired, to improve recognition performance

Application: Classification of time series

- Use one HMM for each class, and learn its parameters from data
- When given a new observation sequence, compute its likelihood under each HMM
- The example is assigned the label of the class that yields the highest likelihood

Summary

- Hidden Markov Models formalize sequential observation of a system without perfect access to state (i.e., state is "hidden")
- A variety of inference problems can be solved using straightforward dynamic programming algorithms
- The learning (parameter fitting) problem is best done with "supervised" data - i.e., state \& observation trajectories
- Parameter fitting can also be solved purely from observation data using EM (called the Baum-Welch algorithm), but results are only locally optimal
- EM can behave in strange ways, so getting it to work may take effort
- Lots of applications!

[^0]: ${ }^{1}$ From Pfeiffer, 2004

