
COMP652/ECSE608 - Assignment 3

March 30, 2017

1. [20 points] PCA
Consider the data set available in the file hw3pca.txt; each row represents
an instance and the columns represent features. You should split the data
into 80% representing the training set and 20% to test the representation.
Perform PCA on the data and plot the reconstruction error as a function
of the number of dimensions, both on the training set and on the test set,
as well as the fraction of the variance accounted for obtained by looking at
the top eigenvalues. Explain what you see and what are the implications
for choosing dimensionality of the data.

2. [30 points] Spectral method for weighted automata
Let A = (α0, {A0, A1}, α∞) be a weighted automaton with n states (i.e.
α0, α∞ ∈ Rn and A0, A1 ∈ Rn×n) on strings built on the alphabet Σ =
{0, 1}. Let f : Σ∗ → R be the function computed by A where Σ∗ is the
set of all strings built on the alphabet Σ. We denote the empty word by
λ (note that λ ∈ Σ∗).

(a) [5 points] Consider the function g that counts the number of 1’s in
a word, e.g. g(0110) = 2, g(10000) = 1, g(011101) = 4... Can
the function g be computed by a weighted automaton? Justify your
answer.

(b) [5 points] Let fsubstring : Σ∗ → R be the function defined by

fsubstring(w) =
∑

u∈Σ∗,v∈Σ∗

f(uwv)

for all w ∈ Σ∗. When f is a probability distribution over Σ∗, give a
probabilistic interpretation of the function fsubstring.

(c) [10 points] For any word w = w1w2 · · ·wk ∈ Σ∗, where each wi is a
symbol in Σ, let Aw = Aw1Aw2 · · ·Awk

(and Aλ = I where λ is the
empty word). Show that if the sum

∑
w∈Σ∗ Aw converges then we

have the identity ∑
w∈Σ∗

Aw = (I −A0 −A1)−1 (1)

and use this identity to give a formula to compute the sum of the
function f over all words (

∑
w∈Σ∗ f(w)) and to show that the function

fsubstring can be computed by a weighted automaton.
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(d) [10 points] Suppose you are given a training sample S drawn from
some probability distribution f over Σ∗. Briefly explain how the
spectral method could be used to learn the function fsubstring from
S, and how you could recover an estimate of f given the weighted
automaton Â = (α̂0, {Â0, Â1}, α̂∞) returned by the spectral method.
What would be the benefits and disadvantages of this method relative
to directly learning f from the training sample S?

3. [10 points] Method of moments and multiview model.
Let h ∈ {1, · · · , k} be a discrete random variable with Pr[h = j] = wj for
all j. Consider random vectors x1 ∈ Rd1 , x2 ∈ Rd2 , x3 ∈ Rd3 which are
conditionally independent given h, and for which the conditional expecta-
tions satisfy

E[xt|h = j] = µt,j , j ∈ {1, · · · , k}, t ∈ {1, 2, 3}

where the µt,j ∈ Rdt are the conditional means of the xt given h = j.
Using simple properties of expectation, show that the second and third
order cross moments E[x1 ⊗ x2] and E[x1 ⊗ x2 ⊗ x3] can be expressed as
functions of the model parameters wj , µj,t. Can we use the tensor method
of moments to recover the model parameters from these cross moments?
Why/How?

4. [40 points] Coupled Hidden Markov Models.
We discussed in class several models for reasoning with sequences of data
(trajectories). The HMM is the simplest such example, in which states are
hidden, and we see observations that depend on the state. The Coupled
Hidden Markov model (CHMM) is a similar kind of graphical model: we
have several hidden Markov models running in parallel, and their states
interact. This model is quite useful, for example, when you try to parse
video, and you consider the observations as being sound and visual data,
respectively.
Consider a system with two HMMs, depicted in Figure 1:
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Here, si and ui are the states of the two coupled HMMs, yi and zi are the
observations coming from the two chains, and the two chains interact in
the way depicted in the picture.
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(a) [5 points] Specify what are the parameters of this model.
(b) [5 points] Derive an algorithm for computing the joint probability of

a sequence of observations (y0, z0), (y1, z1) . . . (yT , zT ).
(c) [10 points] Derive a forward algorithm that computes the most likely

sequence of hidden states given a sequence of observations.
(d) [10 points] Suppose that instead of the chains being coupled at every

time step, the coupling only happens every k time steps (on time
step 0, k 2k etc). For k = 1, you get the same model as above. If
k is fairly large compared to the length of sequences, the chains are
called loosely coupled. Describe how your model and the inference
algorithms change in this case.

(e) [10 points] Suppose that you observe several sequences of two time
series and you know that they come from a loosely coupled HMM;
you know the number of possible states for each individual chain, but
you do not know k. Describe a learning algorithm for this problem.
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