
Lecture 28: Heaps (as an implementation for priority
queues)

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

March 17, 2014

In this lecture we talk about a different type of binary tree called a heap. Heaps are an effi-
cient way of implementing priority queues. We will first review priority queues, then present the
main properties of heaps, discuss their implementation using arrays and show the main operations
available on the heap ADT.

1 Priority queues
A very useful data structure for many applications is the priority queue. A priority queue contains
pairs of objects and “priorities” (or keys) associated with them. For example, a computing server
may get jobs that it has to run, and each job may have an integer number associated with it,
indicating how urgent the job is. In this case, the processing of the jobs is not done on a first-come
first-served basis, but instead it is done in the order of their priorities, from the most urgent to the
least urgent job. In the further description we assume without loss of generality that lower keys
indicate more priority.

The main operations that need to be implemented in a priority queue are:
Object findMin() - returns the object that has the most priority (the lowest key)
void insert (Object o, int priority) - inserts in the queue the specified object with the specified
priority
Object removeMin() - removes from the queue the object with most priority

So far, we have discussed implementations of queues using linear data structures, such as
linked lists or arrays. Priority queues can be implemented using such structures as well. What are
the options?

1. Sorted array
If we implement the queue as a sorted array, the minimum is always the first element (as-
suming increasing order) so retrieving it is trivial and takes O(1). Removing the minimum
element is also O(1), if we allow the head of the queue to be represented as an index which
can loop around in the array as needed. In this case, removing the min is achieved by just in-
crementing this index. Inserting a new element in the queue is more complicated, because we

1



must first do a binary search to find the appropriate place for the element, and then we must
shift the other array elements to make room for the new entry. This takes O(log n) + O(n)
in the worst case (where n is the number of elements in the queue), which results in O(n)
complexity.

2. Linked List
If we implement the queue as a linked list, the element with most priority will be the first
element of the list, so retrieving the content as well as removing this element are both O(1)
operations. However, inserting a new object in its right position requires traversing the list
element by element, which is an O(n) operation.

Hence, neither the array nor the linked list implementation work well if a lot of insertion operations
are required by the application using the priority queue. The heap data structure allows insertions
to be performed more efficiently, while making removal a bit more expensive.

2 Heap definition
A heap is a binary tree with two important properties:

• For any node n other than the root, n.key ≥ n.parent.key. In other words, the parent always
has more priority than its children.

• If the heap has height h, the first h − 1 levels are full, and on the last level the nodes are all
packed to the left.

An example of a heap, which respects these properties, is presented below. For simplicity, only the
keys are shown. Note that, unlike in the case of binary search trees, in a heap there is no special
relationship between siblings. The height of the heap in this example is 2. The ordering between
the keys of parents and children is present at every level.

2

5 4

8 10 6

Suppose that we have a heap of height h. The maximum number of nodes for this height is
achieved if the last level is complete. In this case, we have 1+ 2+ · · ·+2h = 2h+1− 1 total nodes
in the tree. What is the minimum number of nodes in the heap? To see this, consider the fact that
the heap must be complete at every internal level i from 0 to h − 1. Hence, if the height is h, we

2



must have 1 + 2 + . . .+ 2h−1 = 2h − 1 nodes on the first h− 1 levels and we need 1 node on the
last level, for a total of 2h − 1 + 1 = 2h nodes. Hence, the number of nodes n in a heap of size h
is between 2h and 2 · 2h − 1. Inverting this relationship, we get that the height h is O(log n). This
suggests that heap operations should work in O(log n) (where n is the number of elements in the
heap).

3 Implementing heaps using arrays
Because the elements in a heap are “packed” together, it is easy to implement a heap using an
array. Assume that we start indexing the array at 1, and consider the example heap above. The
array representation will be as follows:
Content 2 5 4 8 10 6
Indices 1 2 3 4 5 6

Computing the last available location for a node becomes easy: you just need to know the last
available spot in the heap. The children of a node i are in the array at indices 2i (left child) and
2i + 1 (right child). Hence, finding the parent of a node of index i is also easy: we compute the
result of the integer division i/2. Note that this is integer division, not floating point division. An
example implementation of a heap using arrays is provided in an associated Java file.

4 Heap algorithms
In this section we present pseudocode and discuss the complexity of heap operations; we also show
some examples of these operations in action. The pseudocode is given assuming that these would
be methods in a heap class.

Algorithm findMin()
return root
Obviously, this is O(1), like in the case of the other priority queue implementations.

Inserting an element in a heap is a bit more complex, because we want to maintain the heap
properties. In order to do this, we will insert the element in the first available spot on the frontier
(making sure that all nodes are still packed to the left). Then, we will re-organize the heap to
restore the parent-child ordering property. As an example, consider inserting an element with key
1 in the heap above. We first put the element in the leftmost spot available on the last layer.

3



2

5 4

8 10 6 1

Now, the heap property is violated because 1 is smaller than its parent. So we will let 1 “bubble
up” on the heap, by swapping it with its parent, until either it becomes the root, or the heap property
is satisfied. The two successive states of the heap during this operation are depicted below.

2

5 1

8 10 6 4

1

5 2

8 10 6 4

The pseudocode of the algorithm is as follows:

Algorithm insert (Object o, int priority)
Input: An object and the corresponding priority
Output: The object is inserted in the heap with the corresponding priority

lastNode← getLast() //get the position at which to insert
lastNode.setKey(priority)
lastnode.setContent(o)
n← lastNode
while n.getParent()! = null and n.getParent().getKey() > priority

swap(n,n.getParent())

The getLast() method is supposed to find the place at which a node can be inserted on the last
level. If the heap is implemented as an array, this will just create an element at the last available
position in the array, so this will be an O(1) operation. Hence, in this case, the complexity is deter-
mined by the while loop, in which the “bubbling up” is implemented. How far can a node move?
At most it can move all the way to the root, and the length of this path is O(log n) - the same as
the height of the tree.

4



Removing a node similarly has to ensure that the two heap properties are retained. Hence, when
removing, the first step is to replace the root of the tree with the rightmost element on the last level.
However, this will likely break the heap property, which needs to be restored by “bubbling down”
this element back towards the leaves. This can be done by repeatedly swapping the node with its
child that has the smallest key, until both children have bigger keys than the node (in which case
the heap property is now correct). For example, consider doing removeMin() on our example heap.
First, element 2 will be removed, and 6 will be promoted to the root, resulting in the following tree:

6

5 4

8 10

Then, 6 will be swapped with 4 (its smallest child), resulting in the following tree:

4

5 6

8 10

At this point, the heap property has been restored, so no more changes are made.
The pseudocode of the algorithm is as follows:

Algorithm removeMin()
Output: The object associated with the minimum key is removed from the heap and returned

lastNode← getLast()
value← root.getContent()
swap(lastNode, root)
update(lastNode) //changes the index of the last available location in the array
n← root

5



while n.getKey() > min(n.getLeft().getKey(), n.getRight().getKey())
if n.getLeft().getKey() < n.getRight().getKey() then swap(n, n.getLeft())
else swap(n, n.getRight())

return value

Note that this is pseudocode, and as such we have omitted some checks (e.g. if the children
are null). Again, an element can only bubble down for a number of steps equal to the height of the
tree so the complexity is O(log n).

To summarize, if we implement a priority queue using a heap, both insertion and removals will
be O(log n) where n is the size of the queue. So, compared to sorted array and linked list imple-
mentations, we have gained efficiency for insertions (which were O(n)) and lost somme efficiency
for removal operations (which were O(1)). However, if the application requires a lot of insertions,
and/or if we think as the number of insertions and removal as roughly matched, overall this is a
win: an insertion removal pair in a linear data structure costs O(1) + O(n) = O(n), and now the
cost is O(log n) +O(log n) = O(log n).

5 Using heaps for sorting
We can easily use the idea of a heap to sort an array of n integers. The approach is to insert all
array elements in the heap, then repeatedly remove the minimum element. The pseudocode of the
algorithm is as follows:

Algorithm HeapSort (a)
Input: An array a of numbers
Output: The array is sorted

Heap h = new Heap(a) // we want the heap to use a as its internal memory
for i = 1 to n do

h.insert(a[i])
for i = n to 1 do

a[i]← h.removeMin() //this orders the array in descending order
for i = 1 to n/2 do

swap(a[i], a[n− i]) //this swaps elements so we can get increasing order again

The complexity of the 3 loops is O(n log n), O(n log n) and O(n) respectively, so the sorting
runs in O(n log n). If the heap works directly on the array a, the algorithm is also in place.

6


