
Lecture 17: Quicksort

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

February 12, 2014

So far, we discussed two sorting algorithms: selection sort, which isO(n2), and merge sort,
which is O(n logn). However, neither of them is used when you have to sort databases with
millions of examples. Instead, the most popular solution inpractice is quicksort.

1 Quicksort algorithm

The basic idea of the algorithm is that of divide and conquer:we want to partition the array into two
parts, sort each one (recursively, of course), and then get the result. But unlike merge sort, where
getting the result means the extra work of merging, here we want to justhave the result when the
recursive calls are finished. The algorithm will workin place, which means that no new array or
data structure is created. All the work takes place in the same array, with onlyO(1) temporary
extra memory being allocated. This is a big advantage if you want to handle lots of data.

The pseudocode of the algorithm is as follows:

Algorithm qsort(a, p, r)
Input: An arraya and two indicesp, r
Output: The portion of the array betweenp andr will be sorted as a side effect of the algorithm
if p < r then

int q ← partition(a, p, r)
qsort(a, p, q)
qsort(a, q + 1, r)

The first call will be qsort(a, 0, n − 1) wheren is the number of elements in the array. All the
interesting work is actually in the partition method. Its goal is to move around the elements such
that all the onesbefore the indexq are less than or equal to some quantityx, while all the onesafter
indexq are greater thanx. This means that if we sort the two halves of the array independently,
the resulting array will also be all sorted (a fact that we will prove shortly).

The pseudocode for the partition algorithm is as follows:

Algorithm partition(a,p,r)
Input: An arraya and indicesp andr within the array

1



Output: An integerj betweenp andr such that all elements with indices≤ j are smaller than or
equal to all the elements with indices> j

x← a[p] //this will be the quantity used to partition the array
i← p− 1 //two indicesi,j will determine which elements to swap
j ← r + 1
while true do

repeat i← i+ 1 until (i > r or a[i] ≥ x)
repeat j ← j − 1 until (j < p or a[j] ≤ x)
if i < j then swap(a[i], a[j])
else returnj

To see what is going on, consider the example of the followingarray:
5 3 2 8 1 2 7 6

The value ofx will be 5, so we will partition the array into a sub-array that has elements≤ 5 and
one that has elements≥ 5. We start with the two indices (“fingers”) outside of the array and we
move them towards the middle of the array, until we get to the following situation:
5 3 8 2 1 2 7 6
i j

At this point, we swap the respective elements and the array becomes:
2 3 8 2 1 5 7 6
i j

The indices continue moving until they get to the following position:
2 3 8 2 1 5 7 6

i j
At this point, we swap again and the array becomes:
2 3 1 2 8 5 7 6

i j
The indices continue moving until the following position:
2 3 1 2 8 5 7 6

j i
Here the indices have crossed so we stop, andj is returned. Note that all elements with indices
≤ j are≤ x = 5, and all the elements to the right ofj are≥ 5. So if these two halves of the array
are now sorted independently, no merging will be necessary in the end.

2 Proof of correctness

Now let’s try to prove (by induction, of course) that the algorithm works.

Base case: Consider an array of just one element. Quicksort will not do anything, as it should
(the array is sorted)

Induction step: We assume that the recursive calls work correctly (put your faith in the recur-
sion!). So after these, the two halves of the array are sorted. Assume also that the partition method
works correctly (we will show this below). Now consider two elements ofa with indicesi < j.

2



Are they in the correct order?

• If i < j ≤ q thena[i] ≤ a[j] by the induction hypothesis

• If q < i < j thena[i] ≤ a[j] by the induction hypothesis

• If i ≤ q < j or i < q ≤ j then, by using the fact that partition works correctly, we know that
a[i] ≤ x ≤ a[j].

So we checked that any two elements must be in the correct order.
Now let’s prove that partition works correctly. First, we need to check thati andj do not go

out of bounds. To do this, note that we start outside and the first move is correct. Second, there
will be at least one element≤ x that is put in the second half of the array (this is the first element).
So i, which always increases, will have to hit this element at some point and it will stop, before it
goes out of bounds (even without the first condition). Forj we can make a similar argument; either
an element≤ x exists (or was swapped) in the first half, in which casej will stop on it, or if not,j
will stop on the first element of the array (and will not go out of bounds).

Second, we will show that the algorithm has aloop invariant: whenever we go through the
while loop, it is true that all elements with indices≤ i are≤ x and all the ones with indices> j are
≥ x. Since this is true all the time, it will also be true when the algorithm terminates, which will
conclude our proof. This property is clearly true based on the two loops in whichi andj move.
Wheni andj stop, the property is violated for those respective elements, so it is fixed with a swap.

3 Complexity

The partition algorithm isO(n) wheren = r− p+1 is the number of elements under scrutiny. To
see this, note that the indices move by one every time, and never return to a previous position, so
at most they can “migrate” from one end to the other.

For the whole algorithm, assuming that the partition algorithm cuts the array into a side of size
k and one of sizen− k, we have the following recurrence:

T (n) = Tpartition(n) + T (k) + T (n− k)

As seen before,Tpartition(n) ∈ O(n) so we have:

T (n) = cn+ T (k) + T (n− k)

The worst case of the algorithm is when the recursive calls split the array into 1 element andn− 1
elements at every step. In this case, we have:

T (n) = cn+ T (1) + T (n− 1)

= cn+ T (1) + c(n− 1) + T (1) + T (n− 2) = c(n + (n− 1)) + 2T (1) + T (n− 2)

= . . .

= c(n+ (n− 1) + . . .+ 2 + 1) + nT (1)

3



As we showed when discussing selection sort, the first term isO(n2). the second term isO(n). So,
in this case, the complexity isO(n2)/ This case is achieved when the array is already sorted. Of
course, this is easy to detect in practice, so the worst case can be avoided.

In the best case, each recursive call would split the array roughly in half, yielding the recur-
rence:

T (n) = cn + T

(

n

2

)

+ T

(

n

2

)

= cn + 2T
(

n

2

)

.

As seen when we analyzed merge sort, this yieldsO(n log
2
n).

In the “average” case, we would expect that the array is divided into some fraction, but not
necessarily half. To do the analysis, we need to a=make some assumption about howk looks on
average. For example, suppose thatk is uniformly distributed between1 and(n−1) (i.e., all values
of k are equally likely). Then, on average, we have:

T (n) = cn+
1

n

n
∑

k=1

[T (k) + T (n− k)]

In COMP-251, you will show that this yields2n lnn, or1.4n log
2
n. In other words, in the average

case, quick sort is only 40% slower than in the best case
Quicksort has been analyzed a lot, and good approaches existto randomize the choice of the

element by which to partition, in order to achieve good performance. A simple approach is to
“shuffle” elements by picking pairs at random and swapping them (similarly to how you shuffle a
deck of cards). Note that as long as we do this a number of timesthat isconstant with respect to the
size of the array, this shuffling will not affect O(), even if this number is very big. An alternative
approach is to partition not by the first element in the array,but by the median of a subset of
elements, in order to avoid the worst-case for arrays that are sorted or nearly-sorted.

4


