Lecture 17: Quicksort

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blarchett

February 12, 2014

So far, we discussed two sorting algorithms: selection sdutch isO(n?), and merge sort,
which is O(nlogn). However, neither of them is used when you have to sort daésbwith
millions of examples. Instead, the most popular solutioprarctice is quicksort.

1 Quicksort algorithm

The basic idea of the algorithm is that of divide and conquerwant to partition the array into two
parts, sort each one (recursively, of course), and therhgetessult. But unlike merge sort, where
getting the result means the extra work of merging, here wa tegjusthave the result when the
recursive calls are finished. The algorithm will warkplace, which means that no new array or
data structure is created. All the work takes place in theesamay, with onlyO(1) temporary
extra memory being allocated. This is a big advantage if yaotwo handle lots of data.

The pseudocode of the algorithm is as follows:

Algorithm gsorta, p, r)
Input: An arraya and two indice®, r
Output: The portion of the array betweerandr will be sorted as a side effect of the algorithm
if p<rthen
int ¢ « partition(a, p,r)
asor(a.p, q)
gsor{a,q+ 1,7)

The first call will be gsofa,0,n» — 1) wheren is the number of elements in the array. All the
interesting work is actually in the partition method. Itsayjs to move around the elements such
that all the onebefore the indexg are less than or equal to some quantityvhile all the onesfter
index ¢ are greater tham. This means that if we sort the two halves of the array inddeetiy,
the resulting array will also be all sorted (a fact that wd pibve shortly).

The pseudocode for the partition algorithm is as follows:

Algorithm partition(a,p,r)
Input: An arraya and indice® andr within the array

Output: An integer; betweerp andr such that all elements with indiceS j are smaller than or

equal to all the elements with indices;

x < a[p] /lthis will be the quantity used to partition the array

1 + p — 1 /ltwo indicesi,j will determine which elements to swap

je—r+1

whiletruedo
repeat i <— i + 1 until (i > r or ali] > x)
repeat j < j — L until (j < por a[j] <x)
if i < j then swafali], a[j])
elsereturny

To see what is going on, consider the example of the followimgy:
53 28127 6
The value ofr will be 5, so we will partition the array into a sub-array that has &ets< 5 and
one that has elements 5. We start with the two indices (“fingers”) outside of the grend we
move them towards the middle of the array, until we get to tlewing situation:
538 2127 6
i J
At this point, we swap the respective elements and the aeegrhes:
2 382157 6
i J
The indices continue moving until they get to the followiragspion:
2 382157 6
i J
At this point, we swap again and the array becomes:
2 312857 6
i J
The indices continue moving until the following position:
2 312857 6
joi
Here the indices have crossed so we stop, arsdreturned. Note that all elements with indices
< jare< z = 5, and all the elements to the right paire> 5. So if these two halves of the array
are now sorted independently, no merging will be necessettye end.

2 Proof of correctness

Now let’s try to prove (by induction, of course) that the aigfan works.

Base case: Consider an array of just one element. Quicksort will not dgtlaing, as it should
(the array is sorted)

Induction step: We assume that the recursive calls work correctly (put yaithfin the recur-
sion!). So after these, the two halves of the array are soAssume also that the partition method
works correctly (we will show this below). Now consider twiements ofe with indices: < j.

Are they in the correct order?
e If i < j < gthena[i] < a[j] by the induction hypothesis

o If ¢ < i < jthenali] < a[j] by the induction hypothesis

o If i < g < jori<q< jthen, by using the fact that partition works correctly, wewkrthat
ali] <z < alj].

So we checked that any two elements must be in the correat orde

Now let's prove that partition works correctly. First, weetketo check that and; do not go
out of bounds. To do this, note that we start outside and tkerfiove is correct. Second, there
will be at least one element z that is put in the second half of the array (this is the firstrelat).
Soi, which always increases, will have to hit this element ats@uint and it will stop, before it
goes out of bounds (even without the first condition). fate can make a similar argument; either
an elemenk z exists (or was swapped) in the first half, in which casell stop on it, or if not,j
will stop on the first element of the array (and will not go otibounds).

Second, we will show that the algorithm hasoap invariant: whenever we go through the
while loop, it is true that all elements with indicesi are< = and all the ones with indices j are
> x. Since this is true all the time, it will also be true when thgoaithm terminates, which will
conclude our proof. This property is clearly true based anttto loops in whichi and ;7 move.
Wheni andj stop, the property is violated for those respective elemesatit is fixed with a swap.

3 Complexity

The partition algorithm i€)(n) wheren = r — p + 1 is the number of elements under scrutiny. To
see this, note that the indices move by one every time, aner meturn to a previous position, so
at most they can “migrate” from one end to the other.

For the whole algorithm, assuming that the partition akiponi cuts the array into a side of size
k and one of size, — k, we have the following recurrence:

T(n) = Thartition(n) + T'(k) + T'(n — k)
As seen beforél}mrtition (n) S O('TZ) so we have:
T(n)=cn+T(k)+T(n—k)

The worst case of the algorithm is when the recursive calistbp array into 1 element and— 1
elements at every step. In this case, we have:

Tn) = en+T(1)+T(n—1)
= n+T(1)+cn—-—1)+T1)+T(n—-2)=cn+(n—1)+271)+T(n—2)

= ;kﬁ+(n—1)+...+2+1)+nT(1)

As we showed when discussing selection sort, the first tefsg). the second term i9(n). So,
in this case, the complexity i9(n?)/ This case is achieved when the array is already sorted. Of
course, this is easy to detect in practice, so the worst Gasbe& avoided.

In the best case, each recursive call would split the arraghly in half, yielding the recur-

rence:
T(n) :cn—O—T(g) —i—T(g) =cn + 2T (g) :
As seen when we analyzed merge sort, this yiélds log, n).

In the “average” case, we would expect that the array is divicthto some fraction, but not
necessarily half. To do the analysis, we need to a=make seswrgtion about how looks on
average. For example, suppose thag uniformly distributed betweehand(n—1) (i.e., all values
of k are equally likely). Then, on average, we have:

n

T(n)=cn+ . S T(k)+T(n— k)

n4

In COMP-251, you will show that this yield3: In n, or 1.4n log, n. In other words, in the average
case, quick sort is only 40% slower than in the best case

Quicksort has been analyzed a lot, and good approached@kastdomize the choice of the
element by which to partition, in order to achieve good penfance. A simple approach is to
“shuffle” elements by picking pairs at random and swappirmgprtifsimilarly to how you shuffle a
deck of cards). Note that as long as we do this a number of tina¢$sconstant with respect to the
size of the array, this shuffling will not affect O(), evenhigs number is very big. An alternative
approach is to partition not by the first element in the arkay, by the median of a subset of
elements, in order to avoid the worst-case for arrays tleasarted or nearly-sorted.

