
Lecture 16: MergeSort proof of correctness, and running
time

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

February 10, 2014

1 Correctness of Merge

We would like to prove that MergeSort works correctly. To do this, let us first look at the correct-
ness of the merge function, as this is iterative, and we have done proofs like this before. Recall
that in such cases we want to find aloop invariant which is a condition that holds every time the
internal loop (or loops) is executed, and helps us prove correctness. In this case, let us focus on
the tmp array. At iterationk, suppose that the indices in the two parts of the arraya arei andj.
Then, our loop invariant will be:tmp[k] ≤ a[l], ∀l ∈ {i, . . .m} andtmp[k] ≤ a[l], ∀l ∈ {j, . . . q}.
In other words, the element we just copy at positionk is theminimum of the remaining elements.
Why does this condition help us? Since thetmp array is filled from left to right, all the elements
left in a will be put in later, at positionstmp[k+1], . . . tmp[q−p+1]. Hence, this condition means
that in the end of the merge,tmp[k] ≤ tmp[l], ∀k < l, which means that after copying,a will be
correctly sorted betweenp andq.

To see why the loop invariant is correct, recall that we assume that when merge is called, the
two parts ofa betweenp andm and betweenm+ 1 andq are already sorted. Hence:

a[i] ≤ a[l], ∀l ∈ {i+ 1, . . .m}

and
a[j] ≤ a[l], ∀l ∈ {j + 1, . . . q}.

Soa[i] anda[j] are the smallest remaining elements. Ifa[i] ≤ a[j], thentmp[k] will get valuea[i],
and we also have thata[i] ≤ a[l], ∀l ∈ {j, . . . q}, The similar reasoning holds in the other case.

2 Correctness of MergeSort

Now that we know Merge works correctly, we will show that the entire algorithm works correctly,
using aproof by induction. For the base case, consider an array of1 element (which is the base
case of the algorithm). Such an array is already sorted, so the base case is correct.

For the induction step, suppose that MergeSort will correctly sort any array of length less than
n. Suppose we call MergeSort on an array of sizen. It will recursively call MergeSort on two

1



arrays of sizen/2. By the induction hypothesis, these calls will sort these arrays correctly. Hence,
after the recursive calls, arraya will be sorted between indicesp, . . .m andm+1, . . . q respectively.
We have already showed that merge works correctly, hence after executing it,a will be correctly
sorted betweenp andq. This concludes our proof.

Recall that when you design recursive algorithms, you have to “put your faith” in the recursion,
assume it will work, then specify the processing that follows it. Induction basically gives you the
mathematical tool to prove that your “faith leap” is indeed justified.

3 Time and space complexity of Merge

The Merge function goes sequentially on the part of the arraythat it receives, and then copies it
over. So the complexity of this step isO(q−p+1). To see this, note that eitheri or j must increase
by 1 every time the loop is visited, so each element will be “touched exactly once in the loop. Note
that the space complexity is alsoO(q − p+ 1), as Merge has to allocate the temporary arraytmp,
in which elements get copied. This is actually a big disadvantage of the MergeSort algorithm: if
the array to be sorted is very big (e.g. the 10,000,000 customers of some company), the memory
cost becomes prohibitive.

4 Complexity of MergeSort

Let us think intuitively what the complexity of MergeSort might be. As seen, the Merge function
goes sequentially on the part of the array that it receives, and then copies it over. So the complexity
of this step isO(p− q+1). MergeSort does two recursive calls, each on an array which is half the
size of the original.

In order to get a better handle of what the resulting complexity might be, suppose that we de-
noted byT (n) the amount of time that MergeSort uses on an array of sizen. Recall that executing
asequence of instructions will cause us toadd the running time. Hence, the running time will obey
the following equation:

T (n) = T
(

n

2

)

+ T
(

n

2

)

+ Tmerge(n) = 2T
(

n

2

)

+ cn

wherec is a constant, reflecting the actual number of basic operations (comparisons, tests, arith-
metic operations, assignments) in the merge routine. An equation like the one above, where we
have a functionT (n) defined based on values ofT at other pointsk < n, is called arecurrence.
Note that recurrences are naturally generated by recursivealgorithms. to compute the running
time, we would like to get a closed formula forT , or at least figure out what its fastest-growing
term is (so that we can figure outO() for the algorithm).

To get a better grip on the problem, let us unwindT for a couple more steps:

T (n) = 2T
(

n

2

)

+ cn

= 2
(

2T
(

n

4

)

+ c
n

2

)

+ cn = 22T
(

n

4

)

+ 2cn

2



= 22
(

2T
(

n

8

)

+ c
n

4

)

+ 2cn = 23T
(

n

8

)

+ 3cn

How many times can we continue this expansion? Until we get toT (1)which is1 (this corresponds
to the base case of running on an array of size 1). Since in eachstep we halven, we will reach
T (1) is log2 n steps. At that point, we will have:

T (n) = 2log2 nT (1) + cn log2 n

The first term above isO(n), the second isO(n logn), so the whole algorithm isO(n logn).
Note that the “unrolling” is meant to give us an idea of the running time. To really establish it,

we would need to prove now by induction that the recurrence indeed holds.
As a second example (done by request in class), consider the recursive algorithm for finding

the maximum in an array (discussed in a previous lecture). Here, the recurrence is:

T (n) = T (n− 1) + c

= T (n− 2) + c+ c = T (n− 2) + 2c)

= T (n− 3) + c+ 2c = T (n− 3) + 3c

= ...

= T (1) + c(n− 1)

which yieldsO(n) (as we know already).

3


