Lecture 16: MergeSort proof of correctness, and running
time

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blaechett

February 10, 2014

1 Correctnessof Merge

We would like to prove that MergeSort works correctly. To st let us first look at the correct-
ness of the merge function, as this is iterative, and we hawe groofs like this before. Recall
that in such cases we want to finda@p invariant which is a condition that holds every time the
internal loop (or loops) is executed, and helps us provesctimess. In this case, let us focus on
thetmp array. At iterationk, suppose that the indices in the two parts of the asraye: and ;.
Then, our loop invariant will betmplk] < all], VI € {i,...m} andtmp[k] < a[l], VI € {j,...q}.
In other words, the element we just copy at positiois theminimum of the remaining elements.
Why does this condition help us? Since thep array is filled from left to right, all the elements
left in « will be putin later, at positionsnplk+1], .. . tmp[g —p+ 1]. Hence, this condition means
that in the end of the mergepnp[k] < tmpll], Vk < [, which means that after copying,will be
correctly sorted betweenandg.

To see why the loop invariant is correct, recall that we asstimat when merge is called, the
two parts ofa betweerp andm and betweem: + 1 andq are already sorted. Hence:

alil <all],vle {i+1,...m}
and
alj] <alll,Vle{j+1,...q}.

Soa[i] anda[j] are the smallest remaining elementsz[if < a[j], thentmp|k] will get valueald],
and we also have thati| < a[l],VI € {j,...q}, The similar reasoning holds in the other case.

2 Correctnessof MergeSort

Now that we know Merge works correctly, we will show that timtiee algorithm works correctly,
using aproof by induction. For the base case, consider an array efement (which is the base
case of the algorithm). Such an array is already sorted,esbake case is correct.

For the induction step, suppose that MergeSort will colyeszirt any array of length less than
n. Suppose we call MergeSort on an array of sizelt will recursively call MergeSort on two

1



arrays of sizex /2. By the induction hypothesis, these calls will sort thesaeyar correctly. Hence,
after the recursive calls, arraywill be sorted between indices. .. m andm+1, . .. g respectively.
We have already showed that merge works correctly, henee a&tecuting ita will be correctly
sorted betweep andq. This concludes our proof.

Recall that when you design recursive algorithms, you havptt your faith” in the recursion,
assume it will work, then specify the processing that folatv Induction basically gives you the
mathematical tool to prove that your “faith leap” is indeadtjfied.

3 Timeand space complexity of Merge

The Merge function goes sequentially on the part of the afray it receives, and then copies it
over. So the complexity of this stepd¥ ¢ —p+1). To see this, note that eitheor j must increase
by 1 every time the loop is visited, so each element will beitteed exactly once in the loop. Note
that the space complexity is aléf{q — p + 1), as Merge has to allocate the temporary atray,

in which elements get copied. This is actually a big disathge of the MergeSort algorithm: if
the array to be sorted is very big (e.g. the 10,000,000 custowf some company), the memory
cost becomes prohibitive.

4 Complexity of MergeSort

Let us think intuitively what the complexity of MergeSortghit be. As seen, the Merge function
goes sequentially on the part of the array that it receivestlaen copies it over. So the complexity
of this step iD(p — ¢ + 1). MergeSort does two recursive calls, each on an array whibhlf the
size of the original.

In order to get a better handle of what the resulting complexight be, suppose that we de-
noted by7’(n) the amount of time that MergeSort uses on an array ofisifecall that executing
aseguence of instructions will cause us tadd the running time. Hence, the running time will obey
the following equation:

n

T(n)=T (ﬁ) LT (ﬁ) + Therge(n) = 2T (2

5 5 )—l—cn

wherec is a constant, reflecting the actual number of basic opers{icomparisons, tests, arith-
metic operations, assignments) in the merge routine. Amtgmulike the one above, where we
have a functiori’(n) defined based on values Bfat other points: < n, is called arecurrence.
Note that recurrences are naturally generated by recuasg@githms. to compute the running
time, we would like to get a closed formula f@r, or at least figure out what its fastest-growing
term is (so that we can figure oQX) for the algorithm).

To get a better grip on the problem, let us unwihiéor a couple more steps:

n> n
— cn
2

= 2 <2T <%) + c%) +en = 2°T (%) + 2¢cn

T(n) = 2T<



_ 92 (2T <%> + c%) 4 oen = 28T (%) +3en

How many times can we continue this expansion? Until we gé{10 which is1 (this corresponds
to the base case of running on an array of size 1). Since ing@aphwe halve:, we will reach
T(1) islog, n steps. At that point, we will have:

T(n) = 2°22"T(1) + cnlogy n

The first term above i®(n), the second i§)(n logn), so the whole algorithm i®(n logn).

Note that the “unrolling” is meant to give us an idea of thenimg time. To really establish it,
we would need to prove now by induction that the recurrendeed holds.

As a second example (done by request in class), consideethesive algorithm for finding
the maximum in an array (discussed in a previous lecturede Hiee recurrence is:

Tn) = T(n—1)+c¢
= Tn—2)+c+c=T(n—2)+20)
= Tn—3)+c+2c=T(n—3)+3c
= ;(1)+c(n—1)

which yieldsO(n) (as we know already).



