
Lecture 15: MergeSort

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

February 7, 2014

When we started talking about sorting, we discussed an algorithm called Selection Sort, an
in-place sorting algorithm (i.e. which does not allocate new memory) whose time complexity is
O(n2). Can we do any better in terms ofO()? The answer is yes, using an algorithm called
MergeSort.

1 Main idea

MergeSort is based on the idea of dividing the problem into independent subproblems, solving the
problems separately, and then combining the subproblem solutions to find the overall solution of
the algorithm. The algorithm has three parts:

1. Divide the array into two halves

2. Conquer each half by sorting it recursively

3. Combine the results obtained, by merging the two halves to obtain onefully sorted array.

This divide-and-conquer idea is very powerful, and as we will see, it is a standard approach used
throughout computer science. To illustrate how this works,consider the following array:
5 3 8 2 1 2 7 6

First, we split the array into two parts:
5 3 8 2 | 1 2 7 6

Then we sort recursively each half. If this works, we will have:
2 3 5 8 | 1 2 6 7

Finally, we will merge the two halves. To do this, we will use atemporary array, in which we copy
the elements from both halves in order, using two indices (“fingers”) to keep track of where we
are. The result will be:
1 2 2 3 5 6 7 8

If we want the result in the original array (which is usually the case) we will have to copy it back.
Hence, MergeSort is not an in-place algorithm, like selection sort.

1



2 Pseudocode

The pseudocode of the algorithm is as follows:

Algorithm mergeSort(a,p,q)
Input: An arraya and two indicesp andq between which we want to do the sorting.
Output: The arraya will be sorted betweenp andq as a side effect
if p < q then

int m← ⌊p+q

2
⌋//this is the middle of the part of interest

mergeSort(a,p,m)
mergeSort(a,m+ 1,q)
merge(a,p,m,q)

Note that if we want to call the algorithm on an array of sizen, the call will be: mergeSort(a,0,n−1)

The pseudocode of the merging routine is as follows:

Algorithm merge(a,p,m,q)
Input: An arraya, in which we assume that the halves fromp . . .m and(m + 1) . . . q are each
sorted
Output: The array should be sorted betweenp andq
Array tmp of sizeq − p+ 1 // this array will hold the temporary result
int i← p //these are the two indices in the two halves of the array
int j ← m+ 1
int k ← 0 //this is the index we will use in the tmp array
while (i ≤ m or j ≤ q) do

if (j = q + 1 or a[i] ≤ a[j]) then
tmp[k]← a[i]
i← i+ 1

else if (i = m+ 1 or a[i] > a[j]) then
tmp[k]← a[j]
j ← j + 1

k ← k + 1
for k = 1 to q − p+ 1 do

a[k + p− 1]← tmp[k − 1]

3 Tracing the execution on an example

Let us now trace the above example in more detail, based on thepseudocode. The first call is
mergeSort(a,0,7), which is on the whole array:
5 3 8 2 1 2 7 6

This will cause a recursive call: mergeSort(a,0,3), which works on the array:
5 3 8 2

Inside this, there is another recursive call: mergeSort(a,0,1), which works on:

2



5 3
Now, the two next recursive calls: mergeSort(a,0,0) and mergeSort(a,1,1) meet the base case, so
they will cause no more recursion. So the next step is to call merge(a,0,0,1). This willswap the
two elements, creating the array:
3 5

So at this point, after the first merge call has executed, the whole arraya is:
3 5 8 2 1 2 7 6

Similarly, we will have a call to mergeSort(a,2,3), working on:
8 2

This generates two next recursive calls: mergeSort(a,2,2) and mergeSort(a,3,3) meet the base case,
so they will cause no more recursion. So the next step is to call merge(a,2,2,3). This will swap the
two elements, creating the array:
2 8

So at this point, after the first merge call has executed, the whole arraya is:
3 5 2 8 1 2 7 6

At this point, the next call is to a merge routine: merge(a,0,1,3), working on:
3 5 2 8

We will trace the movement of the indices here. We start withi = 0 andj = 2, in the positions
below:
3 5 2 8
i j

The arraytmp has size 4 and no content yet (indicated by a dash - below), theindexk is on its first
position:

- - - -
k

The if condition indicates that we should copya[j], and this index would be moved. After this, the
positions of the indices ina are:
3 5 2 8
i j

Thetmp array is as follows:
2 - - -

k
Next, we will copya[i], so in the original array we have:
3 5 2 8

i j
and the tmp array is:
2 3 - -

k
Next we will copy5, so we have:
3 5 2 8

i j
and the tmp array is:
2 3 5 -

k
Now, becausei has gone out of bounds (it ism+1), we will copy the rest of the elements from the

3



second part of the array, which gives the followingtmp array: 2 3 5 8
Next we will copy this intoa, which now looks as follows:
2 3 5 8 1 2 7 6

Note that all the “work” of shifting around array elements isactually done in the merge routine.
You can similarly trace the evolution of the algorithm on thesecond half of the array (left as an
exercise).

4


