Lecture 15: MergeSort

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blarchett

February 7, 2014

When we started talking about sorting, we discussed an ittigoricalled Selection Sort, an
in-place sorting algorithm (i.e. which does not allocatevmeemory) whose time complexity is
O(n?). Can we do any better in terms 6f()? The answer is yes, using an algorithm called
MergeSort.

1 Mainidea

MergeSort is based on the idea of dividing the problem intdependent subproblems, solving the
problems separately, and then combining the subprobleatisos to find the overall solution of
the algorithm. The algorithm has three parts:

1. Dividethe array into two halves
2. Conquer each half by sorting it recursively
3. Combinethe results obtained, by merging the two halves to obtairfalhesorted array.

Thisdivide-and-conquer idea is very powerful, and as we will see, it is a standard @ggr used
throughout computer science. To illustrate how this wocksisider the following array:

538 2127 6
First, we split the array into two parts:

53 8 2| 12 7 6
Then we sort recursively each half. If this works, we will bav

2 358|126 7
Finally, we will merge the two halves. To do this, we will useeenporary array, in which we copy
the elements from both halves in order, using two indicea@#rs”) to keep track of where we
are. The result will be:

1 2 2 3 5 6 7 8
If we want the result in the original array (which is usualtgtcase) we will have to copy it back.
Hence, MergeSort is not an in-place algorithm, like setecsort.

2 Pseudocode

The pseudocode of the algorithm is as follows:

Algorithm mergeSori,p,q)
Input: An arraya and two indice® andq between which we want to do the sorting.
Output: The arraya will be sorted betweep andq as a side effect
if p < qthen
int m < |24 |//this is the middle of the part of interest
mergeSori{,p,m)
mergeSori,m + 1,q9)
merge("!p!m!Q)

Note that if we want to call the algorithm on an array of sizéhe call will be: mergeSori(0,n—1)
The pseudocode of the merging routine is as follows:

Algorithm merge(,p,m,q)
Input: An arraya, in which we assume that the halves frgm..m and(m + 1) ...q are each
sorted
Output: The array should be sorted betweeandq
Array tmp of sizeq — p + 1 // this array will hold the temporary result
int ¢ «+ p /lthese are the two indices in the two halves of the array
intj«~m-+1
int £ < 0 //this is the index we will use in the tmp array
while(: < mor 7 <g)do
if (j =q+ 1orali] <alj]) then
tmplk] < ali
141+1
elseif (i =m+1or afi| > alj]) then
tmp[k] < alj]
j—j+1
k+—k+1
fork=1tog—p+1do
alk +p — 1] < tmplk — 1]

3 Tracing the execution on an example

Let us now trace the above example in more detail, based opsimadocode. The first call is
mergeSori{,0,7), which is on the whole array:
5 38 2127 6
This will cause a recursive call: mergeSar€(,3), which works on the array:
5 3 8 2
Inside this, there is another recursive call: merge&dl), which works on:

2

5 3
Now, the two next recursive calls: mergeSey®0) and mergeSori(1,1) meet the base case, so
they will cause no more recursion. So the next step is to catbe(,0,0,1). This willswap the
two elements, creating the array:
3 5
So at this point, after the first merge call has executed, tidenarrayu is:
35821276
Similarly, we will have a call to mergeSoit@,3), working on:
8 2
This generates two next recursive calls: merge&@®) and mergeSort(3,3) meet the base case,
so they will cause no more recursion. So the next step is tomabe,2,2,3). This will swap the
two elements, creating the array:
2 8
So at this point, after the first merge call has executed, th@enarrayu is:
35281276
At this point, the next call is to a merge routine: mergé(1,3), working on:
3 5 2 8
We will trace the movement of the indices here. We start with 0 and; = 2, in the positions
below:
3 5 2 8
i]
The arraytmp has size 4 and no content yet (indicated by a dash - belowindes & is on its first
position:
k
The if condition indicates that we should coply], and this index would be moved. After this, the
positions of the indices in are:
3 5 2 8
[
Thetmp array is as follows:
2 - - -
k
Next, we will copyali], so in the original array we have:
3 5 2 8
i j
and the tmp array is:
2 3 - -
k
Next we will copy5, so we have:
3 5 2 8
]
and the tmp array is:
2 3 5 -
k
Now, because has gone out of bounds (itis + 1), we will copy the rest of the elements from the

second part of the array, which gives the followimgp array: 2 3 5 8
Next we will copy this intoz, which now looks as follows:

2 3581276
Note that all the “work” of shifting around array elementsaitually done in the merge routine.
You can similarly trace the evolution of the algorithm on #eeond half of the array (left as an
exercise).

