
Lecture 10: Big-Oh

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

January 27, 2014

So far we have talked about O() informally, as a way of capturing the worst-case computation
time of an algorithm. We are now going to delve more in detail into the definition of O(), as well
as how we compute it for different pieces of code. Note that O() is used in general to measure both
time as quell as memory requirements.

1 Examples
Whenever we assess running time, we will do it as a function of the size of the input provided to
the algorithm. We are mainly interested in the “shape” of the running time, as a function of the

We have noted before that basic operations, such as assignments, arithmetic operations, com-
parisons etc are assumed to take a constant amount of time, because this time does not vary regard-
less of the input; we denote this as O(1). For example, the code:

int x = 11;
int y = 10;
int z = x+ y;
if (z > 10) z = z − 1;

is O(1). No matter how we modify the values, these operations will always take the same amount
of time. It is true that in practice, the 4 instructions above will take slightly longer than only one
such instruction. But the O() notation will ignore such details, and focus on the “big picture”:
while the running time of the 4 instructions is the sum of the running times for each of them, it still
is constant, regardless of the actually values we give to these variables.

Now let us consider a for loop going on an array a of size n:

for (i = 0; i < n; i++)
a[i] = 1;

The loop executes n times, and during each execution, we run a constant-time operation. Hence,
the total running time is n ∗ c where c is a constant, and it grows linearly with the size of the array
a. Hence, the complexity is O(n).

1



Now consider another loop:
for (i = 0; i < n; i+ = 2)

a[i] = 1;

This loop executes n/2 times, so the total running time is n/2 ∗ c, where c is a constant, but
from the point of view of O(), this is still O(n), because the running time still grows linearly with
n.

2 Intuition and definition
We have seen now that O() only takes into account the ”fastest-growing” components of the actual
running time, and that constants do not matter. Now we give a formal definition of O() and some
results which help us compute it.

We want to use the O() notation in order to say whether a function f grows slower than a
function g. If so, we want to say that f(n) is “of order” g(n) (denoted O(g(n))). So far, we have
been using this mainly to talk about computation time, but we will also use it for memory usage in
the future. In general, we can define this concept by talking about general functions, even without
having a computational application in mind.

Figure 1: Function f(n) grows slower than g(n)

To get some intuition, consider the example in Figure 1. Function f is growing slower than g
(the top line), but this does not mean that f is always smaller. However, after some point n0, it
really is always smaller. In general, we can allow g to be multiplied by a positive constant c: the
effect of this will not affect the order of growth. For example, if f is a quadratic function and g is
a linear function, intuitively no matter how much we multiply g, f will overtake it eventually. This
motivates the following definition:
Definition (Big-Oh): Function f(n) is O(g(n)) if and only if there exist a constant c > 0 and a
constant natural number n0 such that:

∀n ≥ n0, f(n) ≤ cg(n)

2



Note that c and n0 must be constants (i.e., they do not depend on n).

We can indeed think of O(g(n)) as the set of all functions f(n) that are O(g(n)):

O(g(n)) = {f(n)|∃c > 0, n0 > 0 s.t. ∀n ≥ n0, f(n) ≤ cg(n)}

Hence, we can use the notation f(n) ∈ O(g(n)) to denote the fact the f(n) is O(g(n)). As we will
see below, these sets are infinite.

3 Proving O() relationships between functions
In order to prove that f ∈ O(g), we can use directly the definition. More precisely, we have to find
constants n0 and c such that f(n) ≤ cg(n),∀n ≥ n0.

Example 1: Prove that 5 + 3n2 ∈ O(1 + n2).
Proof: The intuition for this example is given in Figure 2. We need to pick some c ≥ 3. For
example, let us pick c = 5. Also, let us choose n0 = 1. Then we have that for any n ≥ n0:

5 + 3n2 ≤ 5 + 5n2 because n ≥ 1

= 5(1 + n2) = c(1 + n2)

Since we found n0 and c, this concludes the proof.

Example 2: Prove that n sin(n) ∈ O(n).
Proof: Note that sin(n) ≤ 1,∀n, so n sin(n) ≤ n,∀n. Hence, we can pick c = 1 and n0 = 1 and
the definition applies.

Example 3: Prove that 5n+ 13 ∈ O(n).
Proof: Pick c = 6 and n0 = 13, and the definition applies.

In order to prove that f 6∈ O(g), we need to show that, for any c and n0 we choose, there will
be some value n ≥ n0 so that f(n) > cg(n).

Example 4: Prove that n2 6∈ O(n).
Proof: Let us pick an arbitrary value c and an arbitrary n0. Consider the function n2 − cn =
n(n − c). This is a quadratic function, which will be positive for any n outside the [0, c] interval.
Hence, we can pick any n > max(n0, c), and we will have n2 − cn > 0, i.e. f(n) > cg(n). This
concludes the proof.

4 Useful results
Theorem (Sum rule): Let f1 and f2 be two functions such that f1(n) ∈ O(g(n)) and f2(n) ∈
O(g(n)). Then f1(n) + f2(n) ∈ O(g(n))

3



Figure 2: Visualizing the first example

Proof: From the definition we have:

f1(n) ∈ O(g(n)) =⇒ ∃n1, c1 such that f1(n) ≤ c1g(n),∀n ≥ n1

f2(n) ∈ O(g(n)) =⇒ ∃n2, c2 such that f2(n) ≤ c2g(n),∀n ≥ n2

Let n0 = max(n1, n2). So for any n ≥ n0, both of the inequalities above hold. By adding them
up, we have:

f1(n) + f2(n) ≤ (c1 + c2)g(n)∀n ≥ n0

which means that f1(n) + f2(n) ∈ O(g(n)).

In code, this situation occurs when we have a sequence of operations, e.g. two for loops fol-
lowing each other, a for loop followed by a function call, etc. This result basically means that the
time complexity of a sequence of operations will be dominated by the longest operation in the
sequence.

Theorem (Constant factors rule): If f(n) ∈ O(g(n) then kf(n) ∈ O(g(n)) for any positive
constant k.
Proof: From the definition, we have:

∀n ≥ n0, f(n) ≤ cg(n) =⇒ kf(n) ≤ kcg(n)

Choosing the same n0 and constant kc, the definition holds.

4



In terms of running time, this means that repeating a piece of code for a constant number of times
does not change its complexity; so loops that execute a constant number of times do not increase
the worst-case complexity.

Theorem (Product rule): If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then f1(n) · f2(n) ∈
O(g1(n) · g2(n))
Proof: From the definition we have:

f1(n) ∈ O(g1(n)) =⇒ ∃n1, c1 such that f1(n) ≤ c1g1(n),∀n ≥ n1

f2(n) ∈ O(g2(n)) =⇒ ∃n2, c2 such that f2(n) ≤ c2g2(n),∀n ≥ n2

Let n0 = max(n1, n2). So for any n ≥ n0, both of the inequalities above hold. By multiplying
them, we have:

f1(n) · f2(n) ≤ (c1c2)g1(n) · g2(n),∀n ≥ n0

which means that f1(n) · f2(n) ∈ O(g1(n) · g2(n)).

In code, this situation corresponds to nesting, e.g. nested for loops, or a function call inside a
loop, or recursive functions. This result means that nesting will increase the complexity of the
code.

5


