
Lecture 2: Examples of algorithms. Abstraction

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blanchette

January 8, 2014

1 Example: Intersection of student lists

Often, a certain problem can be solved by several different correct algorithms, which might have
different efficiency. For example, suppose I want to find a good time to schedule a tutorial for
COMP-250. To do this, I might want to know how many students from COMP-250 also take
COMP-206, MATH-133 etc., in order to avoid conflicts. So now suppose that I have two lists of
students (for two courses) in arraysa andb, and I want to compute the number of elements in
common. We assume, for simplicity, that there are no duplicate elements in any array (this is true
if they are indeed student lists). Ideally, we would like to get an algorithm that also runs fast (for
instance, in terms of the number of comparisons it requires).

The simplest solution is to loop througha, and for each of its elements, look it up inb. In
pseudocode, this would look as follows:

Algorithm: listIntersection(a,n,b,m)
Input: An arraya of n elements (in our case, strings) and an arrayb of m elements of the same
type asa. The elements ofa are assumed to be distinct. The same is true forb.
Output: The number of elements present in botha andb
int i,j //indices for the two arrays
int intersect← 0 //this variable will hold the result
for i← 0 to n− 1 do

for j ← 0 to m− 1 do
if a[i] = b[j] then

intersect← intersect + 1
break

return intersect

Now let’s think about the running time of this algorithm. Of course, the running time depends
on the size of the two arrays,m andn: two big lists will take more time to intersect than two small
ones. So we will have todescribe the running time as a function of the size of the input. There
is an additional problem, though: the running time may depend not only on the size of the input,
but also on thecontent of the input. For instance, in our case, if we have arrays{“Alice”, “Bob”,

1



“Carl”} and{“Alice”, “Bob”, “Carl” }, we find the solution with 6 comparisons. But if the second
array is{“Doina, “John”, “Wayne”}, it will take 9 comparisons.

In principle there are three possible ways of measuring the running time of an algorithm:

1. Best case:This is the running time of the “easiest” input, and it is usually meaningless.

2. Worst case:This is the running time on the worst input. This is often not so hard to compute,
and we will focus on it in this course. We denote this byO (read “Big-Oh”), and we will
formalize this notion in an upcoming lecture.

For instance, in the case of the list intersection, the worstcase is the one in which the lists
do not have any overlap, in which case we will do a number of comparisons ofm · n.

3. Average case:This is the running time on an “average” input. The trouble isthat when we
say “average”, we must know what kind of inputs we are expecting (i.e., what is the input
distribution) and this is often very hard to anticipate. Even when this is known, the average
time may be hard to compute.

In our example, suppose that we expect the lists to have an overlap of k students. Then for
then−k students that are ina but not inb, we will need to go to the end of the arrayb, doing
(n − k)m comparisons. For the students that are in both, we need to be able to say how
many comparisons we expect to make on the average. Maybem

2
would be a good estimate,

but this is highly dependent on the assumptions we make aboutthe arrays we will receive. If
this were true, the average running time would be(n − k)m + km

2
= nm − km

2
. Note that

this is a “tighter” estimate than the worst-case, but depends on the expected overlapk. To
simplify it, we will need to make further assumptions on whatwe expectk to be.

In this course we will focus on analyzing worst-case runningtime (complexity) of algorithms,
in a way that is as independent as possible of the computer used, the programming language, the
compiler and other such details.

2 Example: Finding an element in an array

An important part of list intersection isfinding a given value in an array. The pseudocode for
the algorithm is as follows:

Algorithm search(a,n,val)
Input: An arraya of n elements and a valueval that we want to find
Output: True if a containsval, false otherwise
int i; //this is an index in the array
i← 0
while (i < n) do

if a[i] = val then
return true

i← i+ 1
return false;

2



In the worst case, this algorithm will go through its internal loop n times (if the element is not
in the array, or the element is in the last position), so it is “O(n)”.

3 Abstraction

Now suppose that I wanted touse the algorithm above for some other purpose (e.g., to find the
intersection of two lists). In order to call it, I only need toknow the first three lines, which tell
me the name of the algorithm, what arguments it expects and what it will return. We will call
this theinterface of the algorithm. Think of this as acontract specifying what you provide, and
what the algorithm provides. It is extremely useful to have such contracts in order to be able to
build and use complex programs. Technically, the interfaceonly contains the types of the inputs
and outputs. However, there may be other important information that is not specified directly
by the data type. For instance, the output may always be positive, or always odd, or have some
other special property. Or the method may have side effects in terms of modifying data that is not
specifically sent as an input (changing “global” variables). In such cases, it is important towrite
commentswhich specify such “fine print” of the contract.

By analogy, consider the case of driving a car. In order to do this, you only need to know how
to use the ignition key, steering wheel and brakes. You donot need to know how the engine works,
how the electric wiring is done etc. Indeed, knowing all these details is useless if you just want to
drive! These details are hidden behind the car’sinterface.

So, in computer science, like in daily life, we will rely a loton abstraction, in order to han-
dle complexity. In other words, we will need tolet go of irrelevant details. One example is
procedural abstraction: once an algorithm is understood, and written down precisely (either in
pseudocode or in a programming language), it can be thought of as a method. This method can
then be called from a more complex algorithmas if it were a primitive step. All we need in order
to call algorithms is theirinterface, not their implementation. Another example isdata abstrac-
tion: we can hide the details of complex data structures and only keep in mind how to use them
(forget how they work internally), like in the example of thecar. We can think of the data structure
as having a certain behavior, without worrying anymore about how this behavior is produced. In
this course, we will learn the internal workings of different data structures, but then forget about
this and think of how they can be used to build large, interesting algorithms and programs.

4 Example: Using search for list intersection

The search procedure above can be used as a building block forthe list intersection example, as
follows:

Algorithm: listIntersection(a,n, b,m)
Input: An arraya of n strings and an arrayb of m strings. The elements ofa are assumed to be
distinct. The same is true forb.
Output: The number of elements present in botha andb
int intersect← 0
for i← 0 to n− 1 do

3



if search(b,m,a[i]) then
intersect← intersect + 1

return intersect

Note that this code is slightly easier to understand and “cleaner” than the previous version.
Also, note that the “search subroutine” can be used by many other algorithms. In general, we will
make it our goal to write code that isre-usableandmodular (i.e. made of small, understandable,
easy-to-debug parts). And, if we manage to improve the search subroutine (as we will do in the
next lecture) all algorithms using it will profit.

In terms of the running time, the new version of listIntersetction written above runs inn·
(running time of search on an array of sizem). So, even the running time is expressed in a modular
way. This is nice, because once we analyze how long the searchtakes, the result can be used to
figure out the running time of algorithms that call it. As it turns out, since we call search on an array
of sizem, it will run in O(m), so the total time for the new version of listIntersection isthe same
as before,O(nm). The main benefit in this version is not in a faster running time, but in having a
program that is easier to understand, analyze and debug, andwhich re-uses other programs.

4


