Lecture 1: Introduction

Doina Precup
With many thanks to Prakash Panagaden and Mathieu Blarchett

January 6, 2014

1 Whatis an algorithm?

First of all, welcome to this course! Our goal will be to irdiece you to some of the basic concepts
in computer science.

The most important such concept is that ofagorithm. An algorithm givesprecise in-
structions to carry out a task based on well-understoodifiversteps. Additionally, we want to
guarantee that if we try to carry this out, the result will begquced in dinite number of steps
(i.e., the task will end). Algorithms have been around forclmilonger than computers. Actually,
until 1946, “computer” just meant a person that can compute.

To understand what an algorithm is, think of the recipe farking pancakes. You will have
a list of ingredients, omputs: sugar, flour, milk, oil, baking soda, chocolate chips (eimckome
guantity). There is a desiremltput: yummy pancakes! And there is a precise sequence of steps
that should be followed to achieve it:

1. Pour flour, sugar, chocolate chips and milk in a bowl
2. Mix until the batter is smooth

3. Heat up the grill

Put baking soda in the bowl

Mix againthe batter is smooth

Pour oil on the grill and let it heat for 10 sec

If the grill is hot enough, pour the batter on the grill

© N o g bk

. Cook until brown, then flip and cook until brown

In general, a cooking recipe can be thought of as an algorittimch hasinputs, outputs and

a sequence of instructionsdescribing how the output can be obtained from the inputdiRgl
origami is a similar example, where the input is a sheet oépapd the output is a swan, or some
other desired shape. Can you think of some other examples?

Mathematical algorithms have been around since the attiqiMayans had algorithms for
predicting solar eclipses centuries in advance. Egyptiges algorithms to build pyramids. Indi-
ans had algorithms for factorizing polynomials. Greeks algdrithms for all kinds of geometric
constructions, like bisecting angles.

Of course, in our daily lives there are also examples for wilere is no well-defined “al-
gorithm”. E.g., coaching someone in sports, learning howebave in order to make friends,
or making certain scientific discoveries are not describdiyl precise sequences of steps. For
some tasks, there are algorithms but they do not always weamkwell. Predicting the weather
or the stock market are such examples; people strive to wegiee existing algorithms for these
problems.

Let us consider now the problem of adding up two fractions:

a ¢ ad++be

b dT b
(For simplicity, assume that we are not interested at the embrim simplifying the resulting frac-
tion; we will explore simplification later). The inputs ateettwo initial fractions, the output is also
a fraction. The procedure described by the equation abayernisral-purpose which means that
it will work for any two well-defined fractions. In general gwill be interested in general-purpose
algorithms, i.e. algorithms that produce ttwrect answer for any inputs that are of a valid type.
During the course, we will see examples of how we peove that an algorithm is correct.

Aside from correctness, another aspect that we will studyetail is theefficiency of algo-
rithms. For instance, adding two fractions requires 3 mlittations and 1 addition, to produce the
numerator and denominator of the resulting fraction. We taik about ways of “counting” these
operations and expressing the efficiency/complexity obiadigms during the course.

A large part of computer science is also devoted to coming itip good languages and rep-
resentations for designing and expressing algorithms. |dimguages that are understandable by
a computer are callegrogramming languages At the intersection of computer science and
computer engineering, people study the structures or masHhor executing algorithms. We will
briefly discuss this aspect as well.

Now let's come back to the problem of adding two fractions] &y to express it in a way
that is understandable by a computer. For this purposectdnais a pair of integersa, b). We
usually write it but the visual appearance does not matter. Integers priengive data type,
i.e. they appear in all programming languages, and ariticnagth integers is available as well.
Fractions will be a data type that is built on top of integelrs.order to make an algorithm for
adding fractiongieneric(i.e. able to work for any two fractions), we will usariablesto hold the
numerators and denominators of the two inputs, as well aetbbthe output. Our little algorithm
looks as follows:

Input: (a,b), (c,d) wherea, b, ¢, d are integers

Output: (n,m), a pair of integers holding the result of the addition.

Algorithm:

l.n=axd+bxc
2. m=bxd

Each multiplication and addition is@imitive operation. Each row above representsipin
the algorithm. In this case, our algorithm uses 4 primitigerations to compute the answer. This
number igndependent of the input of the algorithm (it is the same regardless which fractions we
have to add). So, we will say that ttiene complexity of the algorithm is constant(or “big-oh
1”). We will define this more precisely later. In general, thee complexity may vary depending
on the data we receive.

In general, in most programming languages there are pven{basic) data types, typically
integers, booleans (can be true or false), floats (used tesept real numbers in a computer -
obviously up to a finite precision!) and characters. Thesaewith primitive operations that
are defined on them (e.g. addition and multiplications feegers, logical “and”, “or” and “not”
for booleans). The first thing you learn in a programming leagg is the basic data types and
operations. We will talk about these in Java (the programgrfanguage we use in this course) in
Lecture 3. Complex data types, such as strings, records,éis, can be built from these. Any
operations on the complex data types will have to be destribore than half of the course is
devoted to complex data types.

2 Example: Finding the maximum of an array

Consider the problem of finding the largest element in anyasfanumbers. The English prose
description looks as follows:

To find the maximum element of an array, initialize m to theueatf the first element.
Then, for each subsequent element, if that element is |#igarm, replace m with the
value of that element. Return the value of m.

This is human readable, but too vague and too verbose to lhd trea computer.

The binary language specification might look like:
01010101101100110101010011010100101010101010010100010010

This is very precise but not readable.
The specification in Java is as follows:

int findMax(int a[]) { //a is the array of integers
int m=a[0]; //m will hold the maximum
for (int i=1; i<a.length; i++)
if (m<a[i]) m=a[i];
return m;

}

This is precise and human readal@dspecially if you use commentsbut you need to know Java
to write it. Some of the things | wrote are very Java-specliie (a.length, which is the number
of elements in the array). If you wrote it in Lisp, the speecifion would look very different, even

3

though it would solve the same problem. (By the way, if thiski® completely foreign to you, you
should be taking COMP-202 instead of COMP-250!)

The pseudocode looks as follows:
Algorithm: findMax(a, n)
Input: an arraya of n numbers
Output: The largest element in the array
m < a[0]
fori« 1ton—1do{

if m < ali] thenm < ai]
}
return m

Usually, in pseudocode we will use constructs similar taypgonming languages:

e Assignmentsm < al0]

Conditionalsif m < a[i] then ...

Loops:for i« 1ton—1do...

Calls to other subroutines

But we will also use freely mathematical notation, which yamnot do usually in a programming
language. We will sometimes assume that someone gives usch bbx to solve a particular
problem (so we can call it as a subroutine). And sometimes iWspecify steps less precisely, if
it is clear what they need to accomplish.

How much time does this algorithm take to execute? As diszliksst time, we will measure
number of primitive operations instead of time. In this ¢dbe number of primitive operations is
proportional to the number of elements in the arrayno matter what array we get, we still have
to look at every element in order to correctly determine treximum. So we will say that the

complexity is “on the order of”; we will denote this in a couple of lectures I6}(n), read “big-oh
of n.

3 How do we express algorithms?

There are different ways in which we could express an algarit One is to use a human-level
language, like English. This is easily understandable bgdms, but is often ambiguous and hard
to understand by a machine. For instance, think of the waygioh you could specify a recipe
for a professional cook, or for an 10-year old (like my daeghor for a robot. The specification
would have to be a lot more precise in the last two cases. lfrerg@ing to specify an algorithm for
a computer, then it has to be specified in a language that thputer understands. Unfortunately,
a computer only understands one language: strings of bstsaigd 1s). This is called binary
language, and is the lowest level in writing programs. Big really difficult for humans to write
and read binary programs, which means that they will malsedbtnistakes. So instead we write
programs in some kind of “high-leveffrogramming languagethat is then translated by another

program, called theompiler or interpreter , into binary language Over the years, people have
come up with many high-level programming languages, e.ga,Ja, C++, Lisp, Fortran, Perl,
Python, ML etc. In this course we will focus mainly on Java.t Bus requires knowledge of the
programming language. Annoyingly enough, these chandgbetime! Also, writing the program
involves specifying a lot of details, e.g. about how the dataept. In a first pass at thinking about
a problem, this may be cumbersome.

Somewhere in between, we want a way to describe algorithatslties not depend on a partic-
ular programming language, but that is unambiguous andlyeaglementable, and easy to read
for people. This is callegseudocode We’'ll have variables, assignments, conditionals, loeps,
Sometimes, we will allow ourselves a little more flexibilihen it is clear how a part of an algo-
rithm should be implemented. In this course, we will oftentevour algorithms in pseudocode.
Pseudocode is often the first pass at a solution for a probRut.it has to be followed by an
implementation in an actual programming language; howéhier step of translating pseudocode
into a programming language is often easy. The little athoriwe discussed above is an example
of pseudocode, and we will discuss more examples next kctur

4 What makes a good algorithm?

There are several important features that we will look faa good algorithm:

1. Correctness Of course, we would like the algorithm to always return flgbtrsolution. This
will be the case for most algorithms that we talk about in théss. However, sometimes
it is very hard to find exactly the right solution (for exampieyou are trying to find the
maximum of a continuous function specified somehow, in asdadsterval). In such cases,
we might settle for an algorithm that just gives the rightsioin most of the time (i.e., with
high probability), or one which gives “approximately” thght solution. In many algorithms
we will try to prove that they are actually correct.

2. Efficiency. We would like the algorithm both to bfast and to require a small amount of
memory for extra variables. We will discuss in detail ways of measyithe speed of an
algorithm

3. Simplicity. This is usually a “softer” requirement than the other twat Basically we want
our algorithms and programs to be easy to understand angzanahsy to implement, easy
to debug and easy to maintain (modify, add functionality.efis is especially important in
the software industry, where you work in teams to build lgygeees of software, which are
used over multiple decades. Unfortunately, it is hard tosueahow complicated software
is (do you count lines of code? classes? variables?). Thaanhole field of research in
software engineering related to this issue. We will be lesserned with analyzing this in
the course, though you are always encouraged to write yalg as “cleanly” as possible.

