
STUDENT NAME:

STUDENT ID:

McGill University
Faculty of Science

School of Computer Science

MIDTERM EXAMINATION - Sample solutions

COMP-250: Introduction to Computer Science

March 12, 2014

Examiner: Prof. Doina Precup

Write your name at the top of this page. Answer directly on exam paper (use both
sides of the paper). There are 3 questions worth 100 points intotal. Partial credit will

be given for incomplete or partially correct answers.

SUGGESTIONS: READ ALL THE QUESTIONS BEFORE YOU START!
GOOD LUCK!

COMP-250: Introduction to computer science Page 2 of 5

1. [40 points]An array problem

You are given an arraya of integers of sizen, whose elements are all distinct numbers (no two
elements are equal) and a valuex.

(a) [30 points] Write an algorithm CountPairs (either in pseudocode or in Java) that returns the
number of distinct pairs of elements ina have the sumx.

For example, on the array: 1 4 3 2 5, calling withx = 5 would return2, calling withx = 1
would return 0 and calling withx = 3 would return 1.

You are allowed to rearrange the elements of the array. Make your algorithm as efficient as
possible.You may call any of the algorithms we discussed in class (sorting, max, search etc),
and you do NOT need to reproduce their code here.

Solution: The idea is to sort the array, then for each elementa[i] we will computex−a[i] and
do binary search to see if this number is in the array. We will need two extra small checks:
one to avoid pairing the element with itself, and one to avoiddouble counting. The solution
in pseudocode is as follows:

Algorithm CountPairs (a, n, x)
Input: An arraya of integers of sizen with distinct elements, and a valuex
Output: The number of distinct pairs ina whose sum isx

int p← 0; //This will hold the result
Sort(a,n);
first we sort the array
//Next we will loop over the elements to count
for (int i← 0; i < n; i++)

if (2 ∗ a[i] 6= x) then
if BinarySearch(a,n,x − a[i]) then p← p+ 1

end for
return p/2; //We would have double-counted each pair, once for each of its members, so we
need to correct for that

(b) [10 points] Give theO() for the running time of your algorithm in terms of the size of the
arrayn, and explain your answer in 2-3 sentences. No formal proof isnecessary.

Solution: Sorting can be done inO(n logn) (e.g. using Mergesort). The for loop runsn
times and inside, at worst we would call binary search every time, and it takesO(logn),
which give usO(n logn) time for the loop. Hence, overall the algorithm isO(n logn).

COMP-250: Introduction to computer science Page 3 of 5

2. [20 points]Short questions

(a) [5 points] Consider the following Java method:

public static int mystery(intn) {
int s = 0;
for (int i = 1; i < n; i = i ∗ 2)

s++;
returns;
}

What function ofn does the code compute?

Solution: The code returnslog
2
n

(b) [5 points] The Stack data structure has three main operations: push, pop and top. As dis-
cussed in class, stacks can be implemented using either arrays or lists. Assuming in the array
implementation, enough memory is allocated for the stack tonot exceed capacity, is there
any difference in terms ofO() for these operations in the two implementations?

Solution: No, in both implementations these operations areO(1).

COMP-250: Introduction to computer science Page 4 of 5

(c) [10 points] Consider the following Java code:
public class Test{

int n;

public Test(){
n = 0;

}

public void incr(inti) {
i++;
n = n + i;

}

public int get(){
returnn;

}

public static void main(String[] args){
Testx = new Test();
int i = 3;
x.incr(i);
System.out.println(”i=”+i);
System.out.println(”n=”+x.get());

}
}
What will the code print? (no explanation necessary)

Solution: The code will print:
i=3
n=4

Note that i is a primitive type, so it is passed by value. Hence, even though it is incremented
inside the method, this change is not visible once the methodis finished.

COMP-250: Introduction to computer science Page 5 of 5

3. [40 points]Recursion

You are given an arraya of integers of sizen.

(a) [25 points] Writea recursive algorithm, called IsSumConstant, which returns true if the sum
of all pairs of elements whose indices sum ton − 1 is the same, i.e.a[0] + a[n − 1] ==
a[1]+a[n−2] == a[2]+a[n−3] == If the array is of odd size, you will add the middle
element to itself and compare that sum to the rest.
For example, on the array: 1 3 4 2, the algorithm should returnfalse (1+2 is not the same as
3+4).
On the array: 5, the algorithm should return true (we only have one sum).
On the array: 3 1 4 2 the algorithm should return true (because3+2 is the same as 4+1).
On the array: 1 2 3 4 5 the algorithm should return true (because 1+5, 2+4 and 3+3 are all
the same).
You are allowed to write more than one method as part of the algorithm. You may write either
pseudocode or Java, as you prefer.

Solution: Note that this problem is a variation on the palindromes problem. We will write an
algorithm which calls a helper function working on a part of the array, and this function will
be recursive.

Algorithm IsSumConstant(a,n)
Input: An arraya of sizen
Output: True if the sum of all pairs of elements whose indices sum ton − 1 is the same,
false otherwise
if (n ≤ 2) then return true;
return IsSumConstantRec(a, 1, n− 2, a[0] + a[n− 1])
Algorithm IsSumConstantRec(a, i, j, x)
Input: An arraya, two indicesi andj and a numberx
Output: True if all elements whose sum of indices is equal toi+ j is x and false otherwise
if (i = j or i+ 1 = j) then

// Base case, we are left with 1 or 2 elements
if (a[i] + a[j] 6= x) then return false
else return true

return (a[i] + a[j] = x) and IsSumConstantRec(a, i+ 1, j − 1, x)

(b) [10 points] Write a recurrence for the running time of your algorithm.
Solution: T (n) = c + T (n − 2) because every time we recurse, we eliminate two elements
from consideration

(c) [5 points] Based on this recurrence, what is theO() of your algorithm?
Solution: O(n) (you can expand the recurrence like we did in class for the recursive max).
Note that we would not be able to do any better with another algorithm, as we need to look
at all elements in the array to answer correctly, so this is also a lower bound.

