STUDENT NAME:
STUDENT ID:

McGill University
Faculty of Science
School of Computer Science

FINAL EXAMINATION
COMP-250: Introduction to Computer Science - Fall 2011

December 13, 2011
2:00-5:00

Examiner: Prof. Doina Precup

Associate Examiner: Prof. Michael Langer

Write your name at the top of this page. Answer directly on exam paper. Three blank pages are added at
the end in case you need extra space. There are 13 questions worth 350 points in total. The value of
each question is found in parentheses next to it. Please write your answer on the provided exam. Partial
credit will be given for incomplete or partially correct answers.

SUGGESTIONS: READ ALL THE QUESTIONS BEFORE YOU START! THE NUMBER OF
POINTS IS NOT ALWAYS PROPORTIONAL TO THE DIFFICULTY OF THE QUESTIONS.
SPEND YOUR TIME WISELY!

GOOD LUCK!

COMP-250: Introduction to computer science Page 2 of 19

1. [50 points] Short questions

(a) True or false: is f(n) = 10nlogy, n + n* — 50n in O(n log, n)? Justify your answer.

(b) Suppose you have a Java program with two classes, A and B, which are in the same package.
From class A, can you call any method of class B? Justify your answer.

(c) True or false: there exists an algorithm that can find a cycle that goes through each node of
a graph exactly once, if such a cycle exists, in time polynomial in the number of nodes and
edges in the graph.

(d) In a Java package, can more than one class have a main method?

(e) You have to develop a text editor and you want to implement an “undo” feature. What data
structure will you use for this task?

COMP-250: Introduction to computer science Page 3 of 19

2. [30 points]Big-Oh

For the following algorithms, state what O() is and explain your answer:

(a) Algorithm f1(n)

141

while : < n
print(7)
141+

while ; > 1
print(z)
i< 1/2

(b) Algorithm f2(n)
1+ 1
while i < n
for) =1toido
print(;j)
14— 1%2

COMP-250: Introduction to computer science Page 4 of 19

3. [10 points] Tree printing

Suppose you have a general tree and you want to print the tree layer by layer: first the root, then
all nodes at depth 1, then all nodes at depth 2 etc. Explain what strategy you would use to achieve
this task (no pseudocode is necessary).

COMP-250: Introduction to computer science Page 5 of 19

4. [50 points] A graph problem

Suppose that you are taking an evening certification program, in which you take only one course
each term. Courses have a prerequisite structure, but there are no co-requisites. You can only
take a course after you have taken all its prerequisites. In order to help you make a schedule, the
program advisor provides you with a graph, in which each course is a node, and each arc represents
a prerequisite structure.

For example, consider the graph below:

In this graph, A and B are prerequisites for C, B is a prerequisite for D and C and F are prerequisites
for E. There are many legal schedules, for example: (A,B,D,C,EE); (A,E,B,C.,E,D); (B,A,D,C,EE);

and many others. The schedule: (A,C,B,D,EE) is not legal, because C is taken before B (which is
one of its prerequisites).

Write an algorithm that takes as argument such a graph and produces a legal schedule (it does not
matter which one). You can make use of any data structures or algorithms discussed in class. You
may assume that all of these are known, and do not need to reproduce them here.

Your algorithm must run in time polynomial in the size of the graph. Your algorithm is allowed
also to modify the graph structure (adding or removing nodes or edges as needed).

COMP-250: Introduction to computer science Page 6 of 19

Your algorithm goes here

COMP-250: Introduction to computer science Page 7 of 19

5. [10 points] Inheritance

Consider the following piece of Java code:

public class A {
private int X;
public A() { x=0; }
public void increment() {x++};
public void print() {System.out.println(x); }

}

public class B extends A {
private int y;
public B() { super(); y=2; }
public void increment() { y++; }
public void add {y = y+x; super.increment(); }
public void print() {super.print(); System.out.println(y); }

}

What is the outcome of the following code:

B z = new B();
z.increment();
z.add();
z.print();

COMP-250: Introduction to computer science Page 8 of 19

6. [20 points] More Big-Oh

Consider the following recursive algorithm:
Algorithm MyAlg (int n)

if (n <= 1) return 1
return 1 + 2xMyAlg(n — 1)

(a) [10 points] Write a recurrence for the running time of the algorithm and use it to make a
guess about the O() of the algorithm

(b) [10 points] Prove by induction that the O() you proposed is correct

COMP-250: Introduction to computer science Page 9 of 19

7. [60 points] A different priority queue implementation

We talked in class about the implementation of priority queues using heaps. We will now assume
that we have a system in which many requests may arrive which have the same priority. In this
case, we want to process the requests with the same priority in the order in which they arrive; all
requests with higher priority must be processed before requests with lower priority.

Assume that you are given a Java class called Queue, which has the following methods:

e Queue() - constructs an empty queue
e void enqueue(Request r) - enqueues a request object
e Request dequeue() - removes the first Request object from the queue and returns it; returns

null if the queue is empty

You are also give the LinkedList(E) Java class, which can implement a list of objects of a specified
type. You will need to make use of the following methods:

e LinkedList() - constructs an empty list

e void add(int index, E element) - adds the specified element in the ith position in the list

e Listlterator(E) listIterator (int index) - returns a list iterator starting at index

e E remove(int index) - removes and returns the head of the list

e int size() - returns the number of elements in the list
The Listlterator(E) has two methods that you need

e boolean hasNext() - returns true if there is at least one element left

e E next() - returns the next element in the list
Provide a class PriorityQueue.java, which implements the priority queue as a list of queues, ordered
in decreasing order of priority. You should implement the following methods:

(a) PriorityQueue() - constructs an empty priority queue

(b) void enqueue (Request r, int priority) - this method looks for a queue of elements of the
specified priority. If one exists, it enqueues r to this queue. If no such queue exists, it creates
one, enqueues r in it, and puts it in the right place in the list of queues.

(c) Request dequeue() - this method returns the request with the highest priority. While looking
for requests, if it finds empty queues, it should remove them.

Please make sure that you declare all needed variables and you write the code for all the methods.

COMP-250: Introduction to computer science Page 10 of 19

Code for the PriorityQueue class goes here

COMP-250: Introduction to computer science Page 11 of 19

8. [10 points] Binary trees

Here is a mystery algorithm that works on binary trees:
Algorithm Mystery (BinaryTreeNode n)

if (n==null) return 1
return 1 + Mystery(n.left) + Mystery (n.right)

What quantity does the algorithm compute when called with the root of a binary tree?

COMP-250: Introduction to computer science Page 12 of 19

9. [20 points] Heaps
Write, in pseudocode, an algorithm that takes as input two heaps h and & and returns a new heap
[, which is the result of merging A and k. In other words, [should be a heap and contain all the
elements of h and k. You may assume that you are provided the usual methods for heaps, and also
that the heaps are implemented using arrays. State the O() of your algorithm.

COMP-250: Introduction to computer science Page 13 of 19

10. [30 points] Binary trees

Suppose that you are given a BinaryTree package in Java, with two classes: BinaryTree.java and
BinaryTreeNode.java. The BinaryTree class contains a field called root, which is of type Binary-
TreeNode. The BinaryTreeNode.java class contains the following fields:

Object content;
BinaryTreeNode left;
BinaryTreeNode right;

(a) [20 points] Write an “equals” method for the BinaryTree class. If needed, you can also add
methods to the BinaryTreeNode class. The method you write should test for the equality of
the current tree object with the tree passed in as a parameter. If the two are equal, it should
return true, otherwise it should return false.

(b) [5 points] What is the O() of your method, assuming each of the two trees has n nodes? You
do not have to prove the answer.

(c) [5 points] If you wrote the same method for binary search trees, could you make its O()
better? Justify your answer.

COMP-250: Introduction to computer science Page 14 of 19

11. [20 points] Search in graphs
Consider the graph in the figure below.

OO0
&)
OIRO

(a) Suppose that you are using breadth-first search to find a path from vertex S to one of the
vertices G1 and G2 (you will stop when you found the first one of these). Show the state
of the queue after each node expansion, assuming that successors of a node are enqueued in
reverse alphabetical order. What path do you find?

(b) Suppose that you are using depth-first search for the same task. Show the state of the stack
after each node expansion, assuming that successors of the same node are pushed in reverse
alphabetical order. What path do you find?

COMP-250: Introduction to computer science Page 15 of 19

12. [20 points] Binary Search Trees

Consider the binary search tree in the figure below.

(a) Draw the tree resulting from the insertion of value 6.

(b) Draw the tree resulting from the removal of value 9 from the initial tree (not the tree after the
insertion of 6).

COMP-250: Introduction to computer science Page 16 of 19

13. [20 points] Using data structures

Suppose that you are hired by an English professor at your old high school for a summer project.
You are supposed to write a software that can detect plagiarists among the students.

All students submit their essays as typed, simple text programs. You have access to their files,
as well as to a large data base of “pre-made” assignments that your professor downloaded form
various web sites (roughly 1000 files). Your program should output pairs of files that it considers
unusually similar.

(a) [10 points] As a first try, you consider simply counting the number of words that two docu-
ments have in common, and sorting all the pairs of files in decreasing order of this measure.
Describe what data structures and algorithms you would use for this problem, and why.

(b) [10 points] A better way to detect plagiarism is to look for common or very similar phrases,
rather than just counting isolated words. In this case, you need to find sequences of several
words that are common between the documents and count them. What algorithms and data
structures would you use in this case? Justify your answer.

COMP-250: Introduction to computer science Page 17 of 19

Page left intentionally blank in case you need extra space

COMP-250: Introduction to computer science Page 18 of 19

Page left intentionally blank in case you need extra space

COMP-250: Introduction to computer science Page 19 of 19

Page left intentionally blank in case you need extra space

