
STUDENT NAME:

STUDENT ID:

FIRST MIDTERM

COMP-250: Introduction to Computer Science - Winter 2008

March 10, 2008

You are allowed one double sided cheat sheet.

There are 4 questions, for a total of 100 points. Please read all the questions first. Please make sure to
write your name and ID number on the exam booklet!

Answer all questions on the exam booklet

Good luck!

COMP-250: Introduction to Computer Science - Winter 2008

1. [20 points]Big-oh

For each of the questions below, provide a true or false answer and explain your reason.

(a) 1000000n+1010∈O(n)
True. Apply the definition ofO(n) with c = 1000001 andn0 = 1010.

(b) 2n+1 ∈O(2n)?
True. Note that 2n+1 = 2·2n and apply the definition ofO() with c = 2, n0 = 0.

(c) 22n ∈O(2n)?

False because limn→∞
22n

2n = limn→∞ 2n = ∞.

(d) 2log10(n) ∈O(n)?
Re-write log10(n) = log2(n) · log10(2), so 2log10(n) = 2log2(n)·log10(2) = nlog10(2) < n (because
2 < 10, so log102< 1. Hence we can use the definition ofO() with c = 1, n0 = 1.

2. [30 points]More Big-Oh

For each of the pieces of pseudocode below, state whatO() is.

(a) Algorithm f1(n)
i← 1
while i < n

print (i)
i← i +10

O(n) (loop with incrementing counter)

(b) Algorithm f2(n)
i← 1
while i < n

print (i)
i← i ∗10

O(logn) (loop where the variable gets multiplied)

(c) Algorithm f3(n)
i← 1
while i < n

print (i)
i← i ∗10+37

O(logn) (same as above, the multiplication is the part that matters)

COMP-250: Introduction to Computer Science - Winter 2008

(d) Algorithm f4(n)
i← n
while i! = 0

print (i)
i← i mod 10

Themod operator takes the remainder of the integer division ofi to 10, so it returns a result
between 0 and 9. If the result is 0, the loop terminates right away, so we haveO(1). If the
result is not 0, subsequent operations will not change the value ofi, so the program will loop
forever.

(e) Algorithm f5(n)
if n = 0 return
print (n)
f5(n−1)
O(n) (you can convert the recursion into a loop with decrementing index).

(f) Algorithm f6(n)
if n = 0 return
print (n)
f6(n/10)
O(logn) (you can convert the recursion in a loop with an index that gets divided by 10 every
time).

(g) Bonus 5 points
Algorithm f7(n)
if n = 0 or n = 1 return
print (n)
f7(n−1)
f7(n−2)
This algorithm is essentially the same as generating the Fibonacci numbers recursively. If you
unfold the recursive calls, you get a binary tree of heightn, which means that the complexity
is exponential:O(2n).

COMP-250: Introduction to Computer Science - Winter 2008

3. [30 points]Pseudocode

Write the pseudocode for an algorithm which receives as input an array of positive integersa and
a positive integerx. If there are two integersp andq in the array such that 2p+ q = x, the algo-
rithm should returnp andq. Otherwise it should return(−1,−1). Your algorithm should work in
O(nlogn). Hint: you can call as subroutines any of the algorithms we discussed in class.

Example: CrazyFind({2,5,1,7}, 9) should return (1, 7)
Example: CrazyFind({2,5,1,7}, 100) should return (-1, -1)

Algorithm CrazyFind (a,n, x)
Input: a is an array of positive integers of sizen andx is a positive integer
Output: A pair (p,q) of numbers from arraya such that 2p+q = x, if such a pair exists;(−1,−1)
otherwise

Sort(a)
i← 1
while i ≤ n

if BinarySearch(a, x−2·a[i]) then return (a[i], x−2·a[i])
return (-1, -1)

Sorting runs inO(nlogn) and the loop executesn times, calling binary search, which is anO(logn)
algorithm, so the whole algorithm isO(nlogn) (using the rules we studied about looping, subrou-
tine calls and sequences of instructions).

COMP-250: Introduction to Computer Science - Winter 2008

4. [20 points]Crazy sort

Consider the sorting algorithm described by the following pseudocode:

Algorithm CrazySort (a,i, j)
Input: An array of integersa and indicesi and j in the array
Output: The arraya will be sorted

if a[i] > a[j] then swap(a[i],a[j])
if i +1≥ j then return
k← b j−i+1

3 c
CrazySort(a,i, j−k) //recursive call on the first two-thirds of the array
CrazySort(a,i +k, j) //recursive call on the last two-thirds of the array
CrazySort(a,i, j−k) // recursive call again on the first two-thirds of the array

The algorithm is called with: CrazySort(a,1,n)
wheren is the length of the array.

(a) [10 points] Prove by induction that the algorithm is correct.
Base case:If there is just one element the array is already sorted and the algorithm exist right
away. If there are two elements, the if-swap statement will ensure that they are put in the right
order. Hence, an array of size 2 will also be sorted correctly.
Induction step: Suppose that the recursive call works and arrays up to sizen are sorted
correctly. Now consider an array of sizen+ 1, n≥ 2. After the first recursive call, we have
a[i]≤ a[j],∀1≤ i < j ≤ 2

3n (by induction hypothesis). This means, more specifically, that for
any 1≤ i ≤ 1

3n and any1
3n≤ j ≤ 2

3n, we ahvea[i]≤ a[j]. Now the elements in the middle and
last thirds will get sorted. After the second recursive call, we havea[i]≤ a[j],∀1

3n≤ i < j ≤ n.
Now we know the following important things:

• In the last third of the array, the elements are sorted correctly:a[i]≤ a[j]∀2
3n≤ i < j ≤ n

• The elements in the last part of the array are all bigger than the elements in the first part:
a[i] ≤ a[j]∀1≤ i ≤ 1

3n and∀2
3n≤ j ≤ n. This is because after our first call, we had put

the “bigger” elements in the middle. So either all these ended up in the last third after
the second recursive call (in which case we have the relationship already), or even bigger
elements got in the last third (in which case this relationship is still true).
• The elements in the last part are bigger than the elements in the second part:a[i] ≤

a[j]∀1
3 ≤ i ≤ 2

3n and∀2
3n≤ j ≤ n (because this call worked).

So after the first two calls, the last part of the array is correct. The last call will make sure the
first two parts are correct. This concludes our proof.

COMP-250: Introduction to Computer Science - Winter 2008

(b) [5 points] Write down a recurrence for the running time of the algorithm,T(n). You may use
a constant,C, to cover for all theO(1) operations.
We haveT(1) = T(2) = C. Forn > 2, we have:

T(n) = C+3T

(
2
3

n

)
= C+3

[
C+3T

((
2
3

)2

n

)]

= C(1+3)+32T

((
2
3

)2

n

)
= C(1+3+32)+33T

((
2
3

)3

n

)
= . . .

= C(1+3+ · · ·+3m−1)+3mT

((
2
3

)m

n

)
(c) [5 points] What isO() for the algorithm? Hint: to justify this, you may need to use the fact

that, for a constantk, 1+k+k2 + · · ·+km = km+1−1
k−1 .

First, note that the argument ofT() becomes 1 when we have:m= log3n
log3(3/2) . SinceT(1) = C,

we have:

T(n) =C(1+3+32+ · · ·+3m−1+3m) =C
3m+1−1

3−1
=

C
2

(3·3
log3n

log3(3/2) −1) =
C
2

(3n
1

log3(3/2) −1)

Hence,T(n) ∈O(n
1

log3(3/2)).

