
COMP 250: Introduction to Computer Science
Assignment 4

Posted Monday March 24, 2014
Due Thursday April 3, 2014

Please submit the homework through myCourses before midnight on the day it is due.

1. [15 points] Trees

(a) [5 points] Suppose that you have a binary tree such that any internal node has exactly two
children. An example of such a tree is depicted in Figure 1.

Show by induction that a tree of this type with n leaves has exactly 2n− 2 edges.

(b) [5 points] k-ary trees
Suppose that you have a tree such that any internal node has exactly k children, with k ≥ 2.
What is the maximum number of nodes that such a tree can have, if its depth is d? Prove your
answer by induction on d.

(c) [5 points] In such a tree of maximum number of nodes, what fraction of the nodes are leaves?
Prove your answer by induction on d.

2. [10 points + 5 points extra credit] More trees
Suppose that you are given a general tree. Let a and b be nodes in this tree. We denote by d(a, b)
the number of edges on the unique path between these two nodes. Let D(a) be the total number of
edges on the paths connecting a to the other nodes in the tree: D(a) =

∑
b d(a, b).

(a) [5 points] Show that for any tree and any node, D(a) ≤ n(n−1)
2

(b) [5 points] Show that for any n there exists a tree for which equality is achieved in the bound
above (describe what this tree looks like).

(c) [5 points] Extra credit: Show that in any tree there exists a node such that, if we remove
this node and the edges adjacent to it, we will obtain trees which have at most n/2 nodes (the
removed node is not counted anymore).

3. [15 points] Heaps
Add to the Heap class provided to you a method for finding the maximum element from the heap
in the most efficient manner possible, without changing the fact that each node is smaller than its

1



children. Your method should be called:
public Object getMax() throws EmptyHeapException

What is the O() of your method?

4. [10 points] List Algorithms
For the single linked list implementation, write a removeBefore(Object o) and removeAfter(Object
o) method. In both cases, you should remove from the list the element before or after the object
passed in as a parameter. If o is not present in the list, or if there is no element before or after it,
you should throw a NoSuchElementException.

5. [50 points] Decision trees
Decision trees are used often in machine learning in order to solve problems in which one needs
to learn a complicated function, such as how to diagnose if a patient has a particular disease or
not, based on seeing examples (e.g. people who have some symptoms, but have or do not have the
disease). In this question, we will develop a Java package for a simplified version of this problem.

Class Instance.java, provided to you, contains a description of an instance. It contains a double
value (e.g. the result of a blood test) and a boolean value, which indicates the class (e.g. does the
patient have the disease or not). We will build the tree from a sorted array of instances (sorted by
the value of the double variable).

Class DTNode.java is a node of a decision tree. All nodes contain a pair of indices in the array,
delimiting the instances that have reached the node. Internal nodes also contain a double value,
which indicates the input value based on which instances are split at this node. For example,
consider the array of instances:

(1, t), (3, t), (4, f), (5, f), (6, t), (7, f), (8, f)

A corresponding tree that classifies all instances correctly is given in Figure 1.

The decision tree construction algorithm is greedy, and is based on a measure of “purity” of the
instances at a node. If we had a .set of instances with the same label, this would be perfect, and
they would not need to be split further. If the instances are mixed, we can consider “cutting” the
array in between each pair of instances where the sign flips. E.g. in the example above, we could
cut at 3.5, 5.5 and 6.5. Which of these is the better cutoff is measured by considering the average
entropy of the resulting nodes. Entropy is a measure of how “random” a distribution is. In our
case, we measure the probability of a class, p, as the fraction of instances of that class among all
instances. The entropy in our case is:

−pt log2 pt − pf log2 pf

Note that if all examples are of one class the entropy is 0, while if the number of examples in each
class is equal, entropy is maximal, and equal to 1. We will consider all possible splits, and pick
the one that generates the lowest average entropy in the resulting node partitions. For example,

2



Cutoff 3.5
Indices 0 6

Indices 0 1 Cutoff 5.5
Indices 2 6

Indices 2 3 Cutoff 6.5
Indices 4 6

Indices 4 4 Indices 5 6

Figure 1: Example decision tree

in the array above, the split that cuts the array at 3.5 gives entropy of 0 in the left partition, and
−1

5
log2

1
5
− 4

5
log2

4
5
on the other side, so the average entropy is:

2

7
∗ 0 + 5

7

(
−1

5
log2

1

5
− 4

5
log2

4

5

)
(a) [20 points] Write a constructor for the Decision Tree class, which takes in a sorted array of

instances, and constructs recursively a tree that splits the data until all leaves are pure. For
simplicity, assume that all instances have a different value of the double attribute. you are
allowed to modify any of the classes provided in any way you want.

(b) [10 points] Sometimes we like to avoid leaves with too few instances, because they might
be noise. Write a method which takes as a parameter a minimum number of instances at a
leaf, l. Traverse the tree, looking at each leaf. If it has fewer than l instances, the leaf and all
its sibling sub-trees should be deleted and their parent should become a leaf. An example of
pruning the leaf with just one instance from the tree in Figure 1 is given in Figure 2.

(c) [10 points] Write a method called classify, which takes a double value, and returns a boolean,
which is the class associated by the tree to it. This accomplished by traversing the tree,
following the left and right branches as appropriate, until a leaf is reached. At the leaf, the
answer is the class of the majority of the instances. For example, in the tree in Figure 2, if

3



Cutoff 3.5
Indices 0 6

Indices 0 1 Cutoff 5.5
Indices 2 6

Indices 2 3 Indices 4 6

Figure 2: Example pruned decision tree

we pass in the value 2, we would take the left branch and classify the result as true. Value 6.5
would take the right branch, then right again, and be classified as false.

(d) [10 points] Write a printing function, which prints the tree in an indented format. At each
internal node you should print the cutoff value, and at each leaf, the class associated with it
and the fraction of instances at this leaf that have the class. The information for a node should
be indented by a number of spaces equal to its depth in the tree.

4


