COMP 250: Introduction to Computer Science
Assignment 3

Posted Tuesday, March 4, 2014
Due Monday, March 17, 2014

Please submit the homework through myCourses before niitlaigthe day it is due.

1. [30 points]Pascal’striangle
The following pattern:

1

11

121
1331
14641
15101051

is called Pascal’s triangle. The leftmost column and thgatal consist of 1s. Each cell contains
the sum of the number immediately above, and immediatelyabad to the left. For example,
the number 6 in the 4th row is the sum of the 3 and 3 in row 3.

(a) [20 points] Write a Java class, called Pascal, with oatcstecursive method, called pascal-
Triangle, which takes as arguments two integer@ndn and returns the number appearing
in themth position of thenth row. For example, Pascal(4,0)=1, Pascal(4,1)=4, Pds2#6,
etc. Your class should also have a main method, in which youldtprint the triangle above
by calling pascalTriangle appropriately.

Solution: The solution is in the file Pascal.java

(b) [5 points] Prove by induction that the sum of all elemeanthenth row of the triangle i2".
Solution:
Base case: Fotr = 0,1 = 2°.
Induction step: Let’, ; denote the element in thigh row andjth column of the triangle. In
the (7 + 1)st row, we have:

i+1 i+1 7

Z Py = 1+ ZPi-i-l,j =1+ Z(Pi,j + Pijo1) +1
=0

j=1 7j=1

Po+Y Py+> Pya+Pi=>» Py+Y Pj=2"+2"=2""
J=1 Jj=0

J=1 J=0



where the second-to-last equality comes form the indudtygrothesis.

(c) [5 points] Prove that if you start at any leftmost 1 (in avrd in the triangle and take a
diagonal of any lengttti,0), (: + 1,1), ..., (i + j,7) you obtain the element at location
(t+7+1,79).

Solution: We will prove this by induction orj, considering a fixed, arbitrary starting raw
Base case: fof = 0, we haveP,; = P11 = 1.
Induction step: SUPPOSE._, Pk = Pitjs+1; (this is the induction hypothesis). Then:

J+1 J
E Piipr = g Pivkr + Pivjr1j = Pirjyy + Pirjrjo = Pijroji
k=0 k=0

where the second-to-last equality is from the inductiondtlgpsis and the last one is from
the definition of the Pascal triangle.

2. [30 points]Stacks and Queues

You can solve this problem either in pseudocode or in Jawaufuse Java, please use the generic
classes provided by the API.

(a) Write a method reverseQueue which takes as argumentuee guel modifies it to have the
content reversed. You may use one stack as an additionagiatture. Give thé)() for the
running time of your method.

Solution: We will take all elements from the queue, put them on the st put them on
the queue again. Since the stack is LIFO, the last elementanae out from the queue will
end up on top of the stack, and hence be the first one poppedekeing will then give us
the desired reverse order. In Java-ish pseudocode:

Algorithm reverseQueue (Queue q)
Stack s
Object x
while (!g.isEmpty())do
X = g.dequeue()
s.push(x)
while (!s.isEmpty())do
X = s.pop()
g.enqueue(x)
or alternatively:
Algorithm reverseQueue (Queue q)
Stack s
while (!g.isEmpty())do
s.push(qg.dequeue())
while (!s.isEmpty())do



g.enqueue(s.pop())
This isO(n), wheren is the size of the queue, since we have a sequence of two lasps e

of which isO(n).

(b) Write a method copyStack that takes as argument a staig# returns a new stack containing
the same elements and in the same order &sfore the method finishes, it must restore the
contents ofs to its original state (same contents in the same order).dBsghe new stack
that the method returns, the only additional data strudiuaeit can use is a single queue.
The method may also use O(1) additional space. Givexf)dor the running time of your
method.

Solution: We will take the elements from the first stack and copy theno bioth the queue
and the second stack Note that this will reverse them. Wedbdrom the copy on the stack
back to the original, to restore it. We now have to copy fromdieue to the stack, back to
the queue and back to the stack again (in order to make sucedbeit correct).

Algorithm copyStack (Stack s)

Stack sCopy

Object x

Queue q

while (!s.isEmpty())do
X = s.pop()
g.enqueue(Xx)
sCopy.push(x)

while (!sCopy.isEmpty()do
s.push(sCopy.pop())

while (!g.isEmpty())do
sCopy.push(qg.dequeue())

while (!sCopy.isEmpty()do
g.enqueue(sCopy.pop())

while (!g.isEmpty())do
sCopy.push(g.dequeue())

The algorithm isD(n) since we have a sequence of loops each of which(is).

3. [40 points]Sorting
Consider the Sorting package, available on the lecturespagb. In this problem, you will work
on adding one more algorithm to this package, as well as ochpearking the code. Benchmark-
ing measures the actual running time of the algorithm (andrg useful in empirical studies). The
purpose of this exercise is three-fold:

e To get you to implement some of the algorithms we discuss (aakk the leap from pseu-
docode to code)

e To get you used to looking at the Java API (so you know how to ififiermation there on
your own)



e To show an example of (simple) performance evaluation iotpra (rather than in theory)

() [10 points] Add a class called quickSort, with a methodolvhimplements the QuickSort
algorithm we discussed in class. You should pick as pivotntieelian of the first, last and
middle elements in the array. Note that you may use extraodsths needed.

Solution The solution is in QuickSort.java

(b) [20 points] Write a new class called SortBenchmark. lis tilass, you will write a main
function which initializes an array of Integer objects ofizeshat is read from the command
line. You will use the java.util.Random class to generatertindom values. Please read the
API documentation for this class (you will mainly be inteessin the constructor that uses a
seed, and in the nextint() method.

Once you create the array, call your quick sort algorithmatt i, and measure its running
time. To do this, a method that will help you is currentTim#éM() from the System class in
the java.lang package. Again, please look at the API to figutewvhat it does, and how to
call it. Print the running time of your algorithm.

Once you have sorted the array, re-initialize it wilie same random integers. You can do
this by setting the seed of the random number generator teaime seed with which you
constructed it. Now call the mergeSort() algorithm whiclpiisvided to you, measuring and
printing its running time as above. Repeat this processagith the selectionSort algorithm
that is provided.

Solution: The solution is in SortBenchmark.java

(c) [10 points] Run an experiment with arrays of size 16, 2884, 4096. If possible, keep

increasing the size until you get errors for the memory seagtoo big. Repeat this exper-
iment 5 times.
Draw a graph (in Excel or your favourite graphing prograngwgimg the running times you
obtained as a function of the size of the array (one line fohex the 5 repetitions, and for
each algorithm). Write a little report including the grapida brief description of what you
found.

Solution: The solution is in experiment.pdf



