
COMP 250: Introduction to Computer Science
Assignment 3

Posted Tuesday, March 4, 2014
Due Monday, March 17, 2014

Please submit the homework through myCourses before midnight on the day it is due.

1. [30 points]Pascal’s triangle

The following pattern:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

is called Pascal’s triangle. The leftmost column and the diagonal consist of 1s. Each cell contains
the sum of the number immediately above, and immediately above and to the left. For example,
the number 6 in the 4th row is the sum of the 3 and 3 in row 3.

(a) [20 points] Write a Java class, called Pascal, with one static recursive method, called pascal-
Triangle, which takes as arguments two integers,m andn and returns the number appearing
in themth position of thenth row. For example, Pascal(4,0)=1, Pascal(4,1)=4, Pascal(4,2)=6,
etc. Your class should also have a main method, in which you should print the triangle above
by calling pascalTriangle appropriately.

Solution: The solution is in the file Pascal.java

(b) [5 points] Prove by induction that the sum of all elementsin thenth row of the triangle is2n.

Solution:
Base case: Forn = 0, 1 = 20.

Induction step: LetPi,j denote the element in theith row andjth column of the triangle. In
the(i+ 1)st row, we have:

i+1∑

j=0

Pi+1,j = 1 +
i+1∑

j=1

Pi+1,j = 1 +
i∑

j=1

(Pi,j + Pi,j−1) + 1

= Pi,0 +

i∑

j=1

Pi,j +

i∑

j=1

Pi,j−1 + Pi,i =

i∑

j=0

Pi,j +

i∑

j=0

Pi,j = 2n + 2n = 2n+1

1



where the second-to-last equality comes form the inductionhypothesis.

(c) [5 points] Prove that if you start at any leftmost 1 (in a row i) in the triangle and take a
diagonal of any length(i, 0), (i + 1, 1), . . . , (i + j, j) you obtain the element at location
(i+ j + 1, j).

Solution: We will prove this by induction onj, considering a fixed, arbitrary starting rowi.

Base case: forj = 0, we havePi,0 = Pi+1,0 = 1.

Induction step: Suppose
∑j

k=0
Pi+k,k = Pi+j+1,j (this is the induction hypothesis). Then:

j+1∑

k=0

Pi+k,k =

j∑

k=0

Pi+k,k + Pi+j+1,j+1 = Pi+j+1,j + Pi+j+1,j+1 = Pi+j+2,j+1

where the second-to-last equality is from the induction hypothesis and the last one is from
the definition of the Pascal triangle.

2. [30 points]Stacks and Queues

You can solve this problem either in pseudocode or in Java. Ifyou use Java, please use the generic
classes provided by the API.

(a) Write a method reverseQueue which takes as argument a queue and modifies it to have the
content reversed. You may use one stack as an additional datastructure. Give theO() for the
running time of your method.

Solution: We will take all elements from the queue, put them on the stack, then put them on
the queue again. Since the stack is LIFO, the last element that came out from the queue will
end up on top of the stack, and hence be the first one popped. Enqueueing will then give us
the desired reverse order. In Java-ish pseudocode:

Algorithm reverseQueue (Queue q)
Stack s
Object x
while (!q.isEmpty())do

x = q.dequeue()
s.push(x)

while (!s.isEmpty())do
x = s.pop()
q.enqueue(x)

or alternatively:
Algorithm reverseQueue (Queue q)
Stack s
while (!q.isEmpty())do

s.push(q.dequeue())
while (!s.isEmpty())do

2



q.enqueue(s.pop())
This isO(n), wheren is the size of the queue, since we have a sequence of two loops each
of which isO(n).

(b) Write a method copyStack that takes as argument a stacks and returns a new stack containing
the same elements and in the same order ass. Before the method finishes, it must restore the
contents ofs to its original state (same contents in the same order). Besides the new stack
that the method returns, the only additional data structurethat it can use is a single queue.
The method may also use O(1) additional space. Give theO() for the running time of your
method.
Solution: We will take the elements from the first stack and copy them onto both the queue
and the second stack Note that this will reverse them. We thengo from the copy on the stack
back to the original, to restore it. We now have to copy from the queue to the stack, back to
the queue and back to the stack again (in order to make sure theorder it correct).
Algorithm copyStack (Stack s)
Stack sCopy
Object x
Queue q
while (!s.isEmpty())do

x = s.pop()
q.enqueue(x)
sCopy.push(x)

while (!sCopy.isEmpty())do
s.push(sCopy.pop())

while (!q.isEmpty())do
sCopy.push(q.dequeue())

while (!sCopy.isEmpty())do
q.enqueue(sCopy.pop())

while (!q.isEmpty())do
sCopy.push(q.dequeue())

The algorithm isO(n) since we have a sequence of loops each of which isO(n).

3. [40 points]Sorting

Consider the Sorting package, available on the lectures webpage. In this problem, you will work
on adding one more algorithm to this package, as well as on benchmarking the code. Benchmark-
ing measures the actual running time of the algorithm (and isvery useful in empirical studies). The
purpose of this exercise is three-fold:

• To get you to implement some of the algorithms we discuss (andmake the leap from pseu-
docode to code)

• To get you used to looking at the Java API (so you know how to findinformation there on
your own)

3



• To show an example of (simple) performance evaluation in practice (rather than in theory)

(a) [10 points] Add a class called quickSort, with a method which implements the QuickSort
algorithm we discussed in class. You should pick as pivot themedian of the first, last and
middle elements in the array. Note that you may use extra methods as needed.

Solution The solution is in QuickSort.java

(b) [20 points] Write a new class called SortBenchmark. In this class, you will write a main
function which initializes an array of Integer objects of a size that is read from the command
line. You will use the java.util.Random class to generate the random values. Please read the
API documentation for this class (you will mainly be interested in the constructor that uses a
seed, and in the nextInt() method.

Once you create the array, call your quick sort algorithm to sort it, and measure its running
time. To do this, a method that will help you is currentTimeMillis() from the System class in
the java.lang package. Again, please look at the API to figureout what it does, and how to
call it. Print the running time of your algorithm.

Once you have sorted the array, re-initialize it withthe same random integers. You can do
this by setting the seed of the random number generator to thesame seed with which you
constructed it. Now call the mergeSort() algorithm which isprovided to you, measuring and
printing its running time as above. Repeat this process again with the selectionSort algorithm
that is provided.

Solution: The solution is in SortBenchmark.java

(c) [10 points] Run an experiment with arrays of size 16, 256,1024, 4096. If possible, keep
increasing the size until you get errors for the memory size being too big. Repeat this exper-
iment 5 times.

Draw a graph (in Excel or your favourite graphing program) showing the running times you
obtained as a function of the size of the array (one line for each of the 5 repetitions, and for
each algorithm). Write a little report including the graph and a brief description of what you
found.

Solution: The solution is in experiment.pdf

4


