COMP 250: Introduction to Computer Science
Assignment 2 - Sample solutions

1. [20 points]Proofs by induction

(a) Prove by induction on the formula for the geometric series: for any natural nurmber 1,

n>1,
bn+1
Z b=

Solution:
Base case: For =0, 0" = =1 =1
Induction step:

n+1

n -1 bn—i—l — 1+ bn+2 _ bn—i—l bn+2 -1
bz bz bn—l—l bn+1 — —
2 Z et = =

where we used the induction hypothesis in the second egualit
(b) Prove by induction that for all positive integers

Z _ n
—~k(k+1) n+1

Solution:
Base case: For = 1 =1

’1*2 2
Induction step:
"i R e S S 1 _on 1 24 2n+1 n+l
—k(k+1) “Zk(k+1) (h+Dn+2) a+l (n+D)0n+2) (+D)n+2) n+2

where we used the induction hypothesis in the second egualit
(c) Prove by induction that? < 2", Vn > 4
Solution:
Base case: Fot = 5, 52 = 25 < 2° = 32 s true.
Induction step:
(n+1)=n*+2n+1<2"+2n+1

by the induction hypothesis. Note that + 1 < n?, becauser> —2n — 1 = (n — 1)? — 2
which is positive fom > 4. Hence:

In+1<n?<2?

1

(d)

using the induction hypothesis again. Putitng these tegetie get:
(TL"‘ 1)2 < 2n + 2n _ 2n+1

which concludes the proof.

Prove by induction that™ — 2" is divisible by 6.

Solution:

Base case: For = 1 we haves! — 2! = 6 which is divisible by 6.

Induction step8™t! — 271 = 8" %8 — 2" %2 = 8" x 6+ 2 % (8" — 2"). Since the first term in
the sum is divisible by 6 and the second term is divisible byoéfthe induction hypothesis,
the sum is divisible by 6, which concludes the proof.

2. [20 points]Big-Oh

(@)

(b)

(©)

(d)

Prove thal0000n 4 10° € O(n).
Solution: Apply the definition ofO() with ng = 10°, ¢ = 10000.

Prove thaB" is notO(n?).

Solution: Suppose by contradiction that € n?, so there must exist n, such thas” <
en®,Vn > ng, which equivalently meanslog; 3 < log; ¢+ 3logz n, orn < logs c+3logs n,
s00 < logs ¢+ 3logs n — n. The limit of the right-hand-side is oo, so the statement cannot
be true.

An alternative proof can be given using the limits rule angdlgipg I'Hopital’s rule repeat-
edly.

IsO(nlog, n) in O(n?*)? Prove your answer

Solution: Yes. Consider any functiofi € O(nlog,n), so there exist constantsn, such
that f(n) < ecnlogyn < cn-n =n?VYn < ng, sof € O(n?) as well.

Give an example of two functionsandg such thatf ¢ O(g) andg & O(f).

Solution: We need two function such that neither dominates the oth#reatime. To ensure
this, it is natural to think of periodic functions. For exaleponsider the tangent and cotan-
gent functions - they are periodic and each dominates thex otler an infinite set of periodic
intervals. Many others are possible as well.

3. [15 points]More Big-oh

For the following pieces of code, give the tight&€st) estimate that you can, and justify your
answer.

(@) intsum = 0;

for (inti =0;i <n;i=1+2);

for (intj =0;5 < 10;5 + +)
sum = sum + 1+ j,
Solution: The inner loop executes a constant number of times (10), utex tbop executes
n/2 times, which isO(n), so overall we ge©(n).

(b) int sum = 0;
for (inti =n;i > n/2;i — —);
for(intj =0;j <mn;j++)
sum = sum + 1+ j;
Solution: The inner loop igD(n), the outer loop is als®@(n) (we got ton /2 decreasing by a
fixed amount every time) and since the loops are nested, w@ @&} for the whole code.

(¢) intsum = 0;
for(inti =n;i >n—2;i— —);
for (intj =0;j <n;j+ =05)
sum = sum + i + 7,
Solution: The outer loop only executes twice, so iti$1), while the inner loop i$)(n), so
the nested loops giv@(n)

4. [25 points]Recursion

Write, in Java, a recursive method countBinaryStringshlaatone integer parameteand returns
the number of binary strings of lengththat do not have two consecutive 0’s. For example, for
n = 4, the number of binary strings of length 4 that do not contaim tonsecutive 0's is 8: 1111,
1110, 1101, 1011, 1010, 0111, 0110, 0101. For this problemr, gnethod needs to retuomly

the number of such strings, not the strings themselves. You may assume that the inspgeified

in the parameter is positive. Looking at the example abowegivie you a hint about how such
strings start.

The method should be static and embedded in a class calleddret This class should also have
a main method. In this case, we will call the main method witlaegument, the number of bits
This argument will be in args[0]. You should convert it to ahusing the Integer.parselnt method.
Look this method up in the Java documentation to see whaes.do

Solution: The main idea is to notice the structure of the recursion.afl@uch strings, either we
have a 1 in the first position, and then we count the numberriofgst of lengthn — 1 with the
property, or if we have a 0 in the first position, we need it tddd®wed by a 1, and then we count
the strings with lengthh — 2. The code is provided in Recursion.java

5. [20 points]More recursion

Suppose we want to compute an exponential fundtiofivhereb is some base andis an integer.
There is a simplé (n) algorithm for this (multiplyb by itself» times). However, in this question
you would have to devise a faster algorithm.

3

(a) [10 points] Devise an algorithm for solving this problémat works inO(log,(n)).
Solution: We will write this recursively. The main idea is that for evenwe can compute
b™/? once then multiply the result together. For addwe will multiply b by the recursive
call, which will be on an even argument.

Algorithm FastExpg,n)
Input: areal numbeb and a positive integer
Output: "

if (n=0)thenreturnl

double res =FastExpg, n/2) /I Note that integer division rounds down

TES = Tes *xres

if (n mod 2 # 0) then res = res x b /In is odd, so we need to multiply one more time
return res

(b) [10 points] Prove by induction that your algorithm wodarectly.
Solution:
Base case: For = 0 the algorithm returns correctly 1.
Induction step: Supposeis odd, son = 2k + 1 for somek > 0. By induction hypothesis,
FastExpg, k) works correctly and computé$, in which case our algorithm will returbt *
bxkxb= b = If nis even, this means = 2k for somek > 1. By induction

hypothesis, FastExfa(k) works correctly and computé§, in which case our algorithm will
returnb® x b x k = b** = b". This concludes the proof.

