
COMP 250: Introduction to Computer Science
Assignment 2 - Sample solutions

1. [20 points]Proofs by induction

(a) Prove by induction onn the formula for the geometric series: for any natural numbersb > 1,
n > 1,

n∑

i=0

bi =
bn+1 − 1

b− 1

Solution:
Base case: Forn = 0, b0 = b−1

b−1
= 1

Induction step:

n+1∑

i=0

bi =
n∑

i=0

bi + bn+1 =
bn+1 − 1

b− 1
+ bn+1 =

bn+1 − 1 + bn+2 − bn+1

b− 1
=

bn+2 − 1

b− 1

where we used the induction hypothesis in the second equality.

(b) Prove by induction that for all positive integersn:

n∑

k=1

1

k(k + 1)
=

n

n+ 1

Solution:
Base case: Forn = 1, 1

1∗2
= 1

2

Induction step:

n+1∑

k=1

1

k(k + 1)
=

n∑

k=1

1

k(k + 1)
+

1

(n + 1)(n+ 2)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)
=

n2 + 2n+ 1

(n+ 1)(n+ 2)
=

n+ 1

n+ 2

where we used the induction hypothesis in the second equality.

(c) Prove by induction thatn2 < 2n, ∀n > 4

Solution:
Base case: Forn = 5, 52 = 25 < 25 = 32 is true.
Induction step:

(n+ 1)2 = n2 + 2n+ 1 < 2n + 2n+ 1

by the induction hypothesis. Note that2n + 1 < n2, becausen2 − 2n − 1 = (n − 1)2 − 2
which is positive forn > 4. Hence:

2n+ 1 < n2 < 2n

1



using the induction hypothesis again. Putitng these together we get:

(n+ 1)2 < 2n + 2n = 2n+1

which concludes the proof.

(d) Prove by induction that8n − 2n is divisible by 6.

Solution:
Base case: Forn = 1 we have81 − 21 = 6 which is divisible by 6.

Induction step:8n+1− 2n+1 = 8n ∗ 8− 2n ∗ 2 = 8n ∗ 6+2 ∗ (8n− 2n). Since the first term in
the sum is divisible by 6 and the second term is divisible by 6 from the induction hypothesis,
the sum is divisible by 6, which concludes the proof.

2. [20 points]Big-Oh

(a) Prove that10000n+ 106 ∈ O(n).

Solution: Apply the definition ofO() with n0 = 106, c = 10000.

(b) Prove that3n is notO(n3).

Solution: Suppose by contradiction that3n ∈ n3, so there must existc, n0 such that3n <
cn3, ∀n > n0, which equivalently meansn log3 3 < log3 c+3 log3 n, orn < log3 c+3 log3 n,
so0 < log3 c+3 log3 n− n. The limit of the right-hand-side is−∞, so the statement cannot
be true.

An alternative proof can be given using the limits rule and applying l’Hopital’s rule repeat-
edly.

(c) IsO(n log2 n) in O(n2)? Prove your answer

Solution: Yes. Consider any functionf ∈ O(n log2 n), so there exist constantsc, n0 such
thatf(n) < cn log2 n < cn · n = n2, ∀n < n0, sof ∈ O(n2) as well.

(d) Give an example of two functionsf andg such thatf 6∈ O(g) andg 6∈ O(f).

Solution: We need two function such that neither dominates the other all the time. To ensure
this, it is natural to think of periodic functions. For example, consider the tangent and cotan-
gent functions - they are periodic and each dominates the other over an infinite set of periodic
intervals. Many others are possible as well.

3. [15 points]More Big-oh

For the following pieces of code, give the tightestO() estimate that you can, and justify your
answer.

(a) int sum = 0;
for (int i = 0; i < n; i = i+ 2);

2



for (int j = 0; j < 10; j ++)
sum = sum+ i+ j;

Solution: The inner loop executes a constant number of times (10), the outer loop executes
n/2 times, which isO(n), so overall we getO(n).

(b) int sum = 0;
for (int i = n; i > n/2; i−−);

for (int j = 0; j < n; j ++)
sum = sum+ i+ j;

Solution: The inner loop isO(n), the outer loop is alsoO(n) (we got ton/2 decreasing by a
fixed amount every time) and since the loops are nested, we getO(n2) for the whole code.

(c) int sum = 0;
for (int i = n; i > n− 2; i−−);

for (int j = 0; j < n; j+ = 5)
sum = sum+ i+ j;

Solution: The outer loop only executes twice, so it isO(1), while the inner loop isO(n), so
the nested loops giveO(n)

4. [25 points]Recursion

Write, in Java, a recursive method countBinaryStrings thathas one integer parametern and returns
the number of binary strings of lengthn that do not have two consecutive 0’s. For example, for
n = 4, the number of binary strings of length 4 that do not contain two consecutive 0’s is 8: 1111,
1110, 1101, 1011, 1010, 0111, 0110, 0101. For this problem, your method needs to returnonly
the number of such strings, not the strings themselves. You may assume that the integerspecified
in the parameter is positive. Looking at the example above will give you a hint about how such
strings start.

The method should be static and embedded in a class called Recursion. This class should also have
a main method. In this case, we will call the main method with an argument, the number of bitsn.
This argument will be in args[0]. You should convert it to an int using the Integer.parseInt method.
Look this method up in the Java documentation to see what it does.

Solution: The main idea is to notice the structure of the recursion. Forall such strings, either we
have a 1 in the first position, and then we count the number of strings of lengthn − 1 with the
property, or if we have a 0 in the first position, we need it to befollowed by a 1, and then we count
the strings with lengthn− 2. The code is provided in Recursion.java

5. [20 points]More recursion

Suppose we want to compute an exponential functionbn (whereb is some base andn is an integer.
There is a simpleO(n) algorithm for this (multiplyb by itselfn times). However, in this question
you would have to devise a faster algorithm.

3



(a) [10 points] Devise an algorithm for solving this problemthat works inO(log2(n)).

Solution: We will write this recursively. The main idea is that for evenn, we can compute
bn/2 once then multiply the result together. For oddn, we will multiply b by the recursive
call, which will be on an even argument.

Algorithm FastExp(b,n)
Input: a real numberb and a positive integern
Output: bn

if (n = 0) then return 1
double res =FastExp(b, n/2) // Note that integer division rounds down
res = res ∗ res
if (n mod 2 6= 0) then res = res ∗ b //n is odd, so we need to multiply one more time
return res

(b) [10 points] Prove by induction that your algorithm workscorrectly.

Solution:
Base case: Forn = 0 the algorithm returns correctly 1.

Induction step: Supposen is odd, son = 2k + 1 for somek ≥ 0. By induction hypothesis,
FastExp(b, k) works correctly and computesbk, in which case our algorithm will returnbk ∗
b ∗ k ∗ b = b2k+1 = bn. If n is even, this meansn = 2k for somek ≥ 1. By induction
hypothesis, FastExp(b, k) works correctly and computesbk, in which case our algorithm will
returnbk ∗ b ∗ k = b2k = bn. This concludes the proof.

4


