
COMP 250: Introduction to Computer Science
Assignment 1 - Sample solutions

1. [15 points]More on list intersection

Suppose that the arrays provided as arguments for listIntersection might contain duplicates. Write,
in pseudocode, a list intersection algorithm for this case.You will have to return the number of
unique elements in the intersection. E.g., for arrays:
1 3 2 3 5
and
1 3 4 1 7 3
your algorithm should return 2, because two distinct values(1 and 3) occur in both arrays.

Solution: There are several ways of doing this, here we look at a solution which relies on search.
We will loop over the first list, look for the current element in the first part. If found, we would
have accounted for it already and we skip to the next element.If not accounted for yet, we will
look for it in the second list. The code is very similar to the one we saw in class:

Algorithm: listIntersection(a,n, b,m)
Input: An arraya of n strings and an arrayb of m strings.
Output: The number of elements present in botha andb

int intersect← 0
for i← 0 to n− 1 do

if (not search(a, i− 1, a[i])) then
if search(b,m,a[i]) then

intersect← intersect + 1
return intersect

2. [20 points]A recursive algorithm problem

A king owns a collection ofn gold coins, stored in an arraya. All coins have exactly the same
weight except for exactly one that is actually filled with lead and is thus heavier than the normal
gold coins. The king asks you to find the index of the lead coin as quickly as possible. You own a
scale that allows you to compare the total weight of any two regionsa[i . . . j] anda[k . . . j] of the
array. Let us represent this scale by a method called compare(a, i, j, k, l), defined as:

compare(a, i, j, k, l) =







−1, if a[i . . . j] has weight smaller thana[k . . . l]
+1, if a[i . . . j] has weight greater thana[k . . . l]
0, otherwise

Using the compare method, write a recursive algorithm (in pseudocode) that returns the index of
the lead coin. Your algorithm should makeO(logn) calls to the compare method (but you do not
need to prove this). Your algorithm has to work for any value of n > 0.

1



Solution: The idea is to mimic binary search, and recurse on the heavierside of the array. However,
we need to make sure we treat even and odd array sizes correctly.

Algorithm FindHeavyCoin (a,n)
Input: An arraya of sizen
Output: The index of the heavy coin
return FindHeavyCoinRec (a,0,n− 1)

Algorithm FindHeavyCoinRec (a, i, j)
Input: An arraya and indicesi andj in between which we seek the heavy coin
Output: The index of the heavy coin

if i = j then return i
if (j − i+ 1 mod 2 == 1) then

// This is the case with even number of elements (as we search betweeni andj inclusive)
if compare(a, i, (j + i)/2, (j + i)/2 + 1, j)< 0 then

return FindHeavyCoinRec(a, (j + i)/2 + 1, j)
else return FindHeavyCoinRec(a, i, (j + i)/2)

else // We have an odd number of elements
if compare(a, i, (j + i)/2− 1, (j + i)/2 + 1, j)< 0 then

return FindHeavyCoinRec(a, (j + i)/2 + 1, j)
else if compare(a, i, (j + i)/2− 1, (j + i)/2 + 1, j)> 0 then

return FindHeavyCoinRec(a, i, (j + i)/2− 1)
else return (j + i)/2

3. [25 points]An array problem

(a) [20 points] Suppose that you are given an array of integers. Write a Java program which
prints out the element or elements that occurleast often in the array, and the number of times
they occur. For example, for array:
1 4 4 3 4 3 5 2 1
your algorithm should print the message:

Elements: 5 2
Number of occurrences: 1

The implementation should be done in the main method of your class.

Solution: The solution is in LeastFrequentElement.java

(b) [5 points] What is the time complexity (O()) of your algorithm? Justify your answer.

Solution: The first two nested loops haveO(n2) in the worst case (which corresponds to
having all distinct elements in the original array). Finding the min count and then printing
the elements are bothO(n). Hence, the sequence results inO(n2). Note that other solutions
are possible too, e.g. one could make a copy of the original array and sort it, then traverse

2



it once and find the shortest contiguous segment in which all elements have the same value.
This would yieldO(n logn) complexity.

4. [40 points]Polynomials

In this problem, you will extend the Poly class we are using inthe lectures.

Solution: See the updated version of Poly.java

(a) [15 points] Write a method for multiplying two polynomials, with the signature:

Poly multiply(Poly p) throws Exception

Your method should throw an Exception if the argument p is null.

(b) [5 points] Write a method which multiplies a polynomial by a constant. It should work by
transforming the constant into a polynomial of degree 0, then calling the multiply method.

(c) [10 points] Write a method that checks if there are any leading zeros in the coefficients of the
polynomial. If so, it should re-size the coefficient array appropriately. Nothing is returned.

(d) [10 points] Write a method that computes the derivative of a polynomial (and returns it as
another polynomial)

3


