
Machine Learning- Assignment 5

Due Thursday December 4, 2009 No penalty until December 9, 2009

1. [20 points] Consider the data in file “hw5data.txt”. Thereare three lines of numbers. Each line
contains 200 numbers, each from the set{1, 2, 3, 4, 5}.

For this problem, imagine that the numbers{1, 2, 3, 4, 5} may come from one of two different
sources, A and B. In the first line of data, all the numbers are generated from source A. Each num-
ber is generated independently and randomly, based on a discrete distribution over{1, 2, 3, 4, 5}
that is specific to source A. Likewise, the second line of numbers is generated from source B, but
according to a different discrete distribution.

(a) Compute the maximum likelihood estimates for A’s distribution and for B’s distribution,
based on the data on lines 1 and 2 respectively. Report the distributions and show your
code.

The third line of numbers was generated from a mixture of A’s and B’s distributions in the
following way. The first number was chosen to come from A’s or B’s distribution with
equal probability. Subsequent numbers were generated in the following way. For each
i = 2, 3, 4, . . . , 200, numberi was generated from the same distribution (A’s or B’s) as num-
ber i − 1 with probability 0.9. Otherwise (with probability 0.1) theother distribution was
used.

One way of modeling the process of generated the third line ofnumbers is as an HMM.
Specifically, the HMM has two states,S = {a, b} and observation setO = {1, 2, 3, 4, 5}.
In statea, the HMM generates an observationo according to the distribution of source A.
Similarly, in stateb, the observation is generated according to the distribution of source B. The
start state probabilities arepa = pb = 0.5. The transition probabilities arepaa = pbb = 0.9,
andpab = pba = 0.1.

(b) Implement the forward-backward algorithm and use it, along with the 3rd line of numbers
and the HMM model described above, to compute the probabilities of each possible state at
each time:P (St = s|o1, . . . , o200), for all t = 1, 2, 3, . . . , 200 and alls = a, b. Graph these
probabilities as a function of time,t, and turn in your code.

(c) Finally, imagine that we know the third line of numbers comes from a mixture of A’s and
B’s distributions, but we don’t know the start probabilities or transition probabilities for the
HMM state. (We will assume, however, the we know the observation probabilities, sim-
ply taking them to be as computed in part (A).) Suppose we initially take pa = pb = 0.5
and paa = pab = pba = pbb = 0.5. Implement the Baum-Welch reestimation algorithm
(except do not update the observation probabilities), and use it to fit the start state distri-
bution and state transitions of the HMM based on the third line of numbers. Report the
optimized probabililities (pa, pb, paa, pab, pba, pbb). Using these optimized probabilities, re-
computeP (St = s|o1, . . . , o200), as in part (B). How do the newP (St = s|o1, . . . , o200)
compare with the old ones? Finally, turn in your code.
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2. [50 points]Coupled Hidden Markov Models

We discussed in class several models for reasoning with sequences of data (trajectories). The HMM
is the simplest such example, in which states are hidden, andwe see observations that depend on
the state. The Coupled Hidden Markov model (CHMM) is a similar kind of graphical model: we
have several hidden Markov models running in parallel, and their states interact. This model is
quite useful, for example, when you try to parse video, and you consider the observations as being
sound and visual data, respectively.

Consider a system with two HMMs, depicted in Figure 1:
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Here,si andui are the states of the two coupled HMMs,yi andzi are the observations coming
from the two chains, and the two chains interact in the way depicted in the picture.

(a) [10 points] Specify what are the parameters of this model.

(b) [10 points] Derive an algorithm for computing the joint probability of a sequence of observa-
tions(y0, z0), (y1, z1) . . . (yT , zT ).

(c) [10 points] Derive a forward algorithm that computes themost likely sequence of hidden
states given a sequence of observations. You recall that in order to do this, in the case of a
simple HMM, you maintain a ”belief state”, which gives the probability of each hidden state
based on the observations seen so far. You can use a similar idea here. Alternatively, you
may consider how you can apply the junction tree algorithm tothis situation.

(d) [10 points] Suppose that instead of the chains being coupled at every time step, the coupling
only happens everyk time steps (on time step0, k 2k etc). Fork = 1, you get the same
model as above. Ifk is fairly large compared to the length of sequences, the chains are called
loosely coupled. Describe how your model and the inference algorithms change in this case.

(e) [10 points] Suppose that you observe several sequences of two time series and you know that
they come from a loosely coupled HMM; you know the number of possible states for each
individual chain, but you do not knowk. Describe a learning algorithm for this problem.

3. [30 points]Gibbs sampling for partially observed Markov chains
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Consider a simple Markov chain where each state is0 or 1. The initial values0 is drawn uniformly.
The transition matrix is such thatp(st+1 = st) = 0.9 andp(st+1 6= st) = 0.1. Suppose that we
observes4 = 1 and we want to computep(s0|s4 = 1).

(a) [10 points] Show how you would use Gibbs sampling in orderto compute this conditional
probability.

(b) [10 points] Extend your algorithm for the case in which weobservest = 1, and no other data
is observed.

(c) [10 points] Describe what happens with the Gibbs sampling approach ast increases. Ift was
very large and you had to do approximate inference for such a problem, would you use Gibbs
sampling or likelihood weighting? Justify your answer.
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