Machine L earning- Assignment 5

Due Thursday December 4, 2009 No penalty until December 9, 2009

. [20 points] Consider the data in file “hw5data.txt”. Thare three lines of numbers. Each line
contains 200 numbers, each from the8et2, 3,4, 5}.

For this problem, imagine that the numbdns 2,3,4,5} may come from one of two different
sources, A and B. In the first line of data, all the numbers areegated from source A. Each num-
ber is generated independently and randomly, based on eewdististribution ovef 1,2, 3, 4,5}
that is specific to source A. Likewise, the second line of neralis generated from source B, but
according to a different discrete distribution.

(@)

(b)

(©)

Compute the maximum likelihood estimates for A's disition and for B’s distribution,
based on the data on lines 1 and 2 respectively. Report tiebditons and show your
code.

The third line of numbers was generated from a mixture of Ad B’s distributions in the
following way. The first number was chosen to come from As ¢s 8istribution with
equal probability. Subsequent numbers were generatedeiriolfowing way. For each
1=2,3,4,...,200, number; was generated from the same distribution (A's or B's) as hum-
beri: — 1 with probability 0.9. Otherwise (with probability 0.1) tteeher distribution was
used.

One way of modeling the process of generated the third lineuohbers is as an HMM.
Specifically, the HMM has two states§, = {a, b} and observation s&b = {1,2,3,4,5}.

In statea, the HMM generates an observatioraccording to the distribution of source A.
Similarly, in state), the observation is generated according to the distributisource B. The
start state probabilities afgg = p, = 0.5. The transition probabilities arg,, = py, = 0.9,
andpab = Dba = 0.1.

Implement the forward-backward algorithm and use nglwith the 3rd line of numbers
and the HMM model described above, to compute the probigsilitf each possible state at
each time:P(S; = s|o1,...,0900), forallt = 1,2,3,...,200 and alls = a,b. Graph these
probabilities as a function of time, and turn in your code.

Finally, imagine that we know the third line of numbersres from a mixture of A's and
B’s distributions, but we don’t know the start probabil#tier transition probabilities for the
HMM state. (We will assume, however, the we know the obs@magbrobabilities, sim-
ply taking them to be as computed in part (A).) Suppose wéalhjittake p, = p, = 0.5
andp.. = Pwy = Pra = P = 0.5. Implement the Baum-Welch reestimation algorithm
(except do not update the observation probabilities), aseliuto fit the start state distri-
bution and state transitions of the HMM based on the third i numbers. Report the
optimized probabililities §., py, Paa, Pab, Poas Pr).  USiNg these optimized probabilities, re-
computeP(S; = s|o1,...,00), @s in part (B). How do the new(S; = s|oy, ..., 020)
compare with the old ones? Finally, turn in your code.



2. [50 points]Coupled Hidden Markov Models

We discussed in class several models for reasoning witresegs of data (trajectories). The HMM
is the simplest such example, in which states are hiddenwargke observations that depend on
the state. The Coupled Hidden Markov model (CHMM) is a sinkiad of graphical model: we
have several hidden Markov models running in parallel, dir tstates interact. This model is
quite useful, for example, when you try to parse video, andgansider the observations as being
sound and visual data, respectively.

Consider a system with two HMMs, depicted in Figure 1:

ONONONS

Here, s; andu; are the states of the two coupled HMMg,and z; are the observations coming
from the two chains, and the two chains interact in the wayateg in the picture.

(a) [10 points] Specify what are the parameters of this model

(b) [10 points] Derive an algorithm for computing the joimbpability of a sequence of observa-
tions (yo, Zo), (yl, Zl> ... (yT, ZT).

(c) [10 points] Derive a forward algorithm that computes thest likely sequence of hidden
states given a sequence of observations. You recall thatler ¢o do this, in the case of a
simple HMM, you maintain a "belief state”, which gives thepability of each hidden state
based on the observations seen so far. You can use a singhite. Alternatively, you
may consider how you can apply the junction tree algorithmhi®situation.

(d) [10 points] Suppose that instead of the chains beingledust every time step, the coupling
only happens every time steps (on time ste@ k& 2k etc). Fork = 1, you get the same
model as above. K is fairly large compared to the length of sequences, thenstaie called
loosely coupled. Describe how your model and the inference algorithms chamthis case.

(e) [10 points] Suppose that you observe several sequeht@es time series and you know that
they come from a loosely coupled HMM; you know the number cdgplole states for each
individual chain, but you do not know. Describe a learning algorithm for this problem.

3. [30 points]Gibbs sampling for partially observed Markov chains



Consider a simple Markov chain where each stateois1. The initial values, is drawn uniformly.

The transition matrix is such thats, ; = s;) = 0.9 andp(s;.1 # s;) = 0.1. Suppose that we
observes, = 1 and we want to computg(sg|ss = 1).

(@) [10 points] Show how you would use Gibbs sampling in otdetompute this conditional
probability.

(b) [10 points] Extend your algorithm for the case in whicheteserves; = 1, and no other data
is observed.

(c) [10 points] Describe what happens with the Gibbs samg@pproach asincreases. It was
very large and you had to do approximate inference for sucblalgm, would you use Gibbs
sampling or likelihood weighting? Justify your answer.



