
Lecture 21: Dimensionality Reduction (II)

• Kernel PCA

• Multi-dimensional scaling

• Self-organizing maps

November 26, 2007 1 COMP-652 Lecture 21

Recall: Principal Component analysis (PCA)

• Let x1, . . .xm ∈ "n be the data

• Consider the scatter matrix (covariance matrix):

S =
1

m

mX
i=1

xix
T
i

• The principal components vj are the eigenvectors of S:

Svj = λjvj , j = 1, . . . n

• The eigenvectors are normalized: vT
i vi = 1

• We sort these vectors in the decreasing order of the

corresponding eigenvalues

• You can pick the first k components, or determine k based on

how much variance is accounted for

• The data will be represented by projecting it onto vi, i = 1, . . . k

November 26, 2007 2 COMP-652 Lecture 21



Recall: Difficult example

PCA will make no difference between these examples

November 26, 2007 3 COMP-652 Lecture 21

What we want

November 26, 2007 4 COMP-652 Lecture 21



Making PCA non-linear

• Suppose that instead of using the points xi as is, we wanted to

go to some different feature space φ(xi) ∈ "N

• E.g. using polar coordinates instead of cartesian coordinates

would help us deal with the circle

• In the higher dimensional space, we can then do PCA

• The result will be non-linear in the original data space!

• Similar idea to support vector machines

November 26, 2007 5 COMP-652 Lecture 21

PCA in feature space (I)

• Suppose for the moment that the mean of the data in feature

space is
Pm

i=1
φ(xi) = 0

• The covariance matrix is:

C =
1

m

mX
i=1

φ(xi)φ(xi)
T

• The eigenvectors are:

Cvj = λjvj , j = 1, . . . N

• We want to avoid explicitly going to feature space - instead we

want to work with kernels:

K(xi,xj) = φ(xi)
T φ(xj)

November 26, 2007 6 COMP-652 Lecture 21



PCA in feature space (II)

• Re-write the PCA equation:

1

m

mX
i=1

φ(xi)φ(xi)
T
vj = λjvj , j = 1, . . . N

• So the eigenvectors can be written as a linear combination for

features:

vj =
mX

i=1

ajiφ(xi)

• So finding the eigenvectors is equivalent to finding the

coefficients aji, j = 1, . . . N, i = 1, . . . m

November 26, 2007 7 COMP-652 Lecture 21

PCA in feature space (III)

• By substituting this back into the equation we get:

1

m

mX
i=1

φ(xi)φ(xi)
T

 
mX

l=1

ajlφ(xl)

!
= λj

mX
l=1

ajlφ(xl)

• We can re-write this as:

1

m

mX
i=1

φ(xi)

 
mX

l=1

ajlK(xi,xl)

!
= λj

mX
l=1

ajlφ(xl)

• A small trick: multiply this by φ(xk)T to the left:

1

m

mX
i=1

φ(xk)T φ(xi)

 
mX

l=1

ajlK(xi,xl)

!
= λj

mX
l=1

ajlφ(xk)T φ(xl)

• By plugging in the kernel and rearranging (Doina does this on

the board) we get: K2aj = mλjKaj

November 26, 2007 8 COMP-652 Lecture 21



PCA in feature space (IV)

• We can remove a factor ofK from both sides of the matrix (this

will only affect eigenvectors with eigenvalues 0, which will not be
principle components anyway):

Kaj = mλjaj

• We have a normalization condition for the aj vectors:

v
T
j vj = 1 ⇒

mX
k=1

mX
l=1

ajlajkφ(xl)
T φ(xk) = 1 ⇒ a

T
j Kaj = 1

• Using the above equation again we get: λjmaT
j aj = 1, ∀j

• For a new point x, its projection onto the principal components

is:

φ(x)T
vj =

mX
i=1

ajiφ(x)T φ(xi) =
mX

i=1

ajiK(x,xi)

November 26, 2007 9 COMP-652 Lecture 21

Normalizing the feature space

• In general, the features φ(xi) may not have mean 0

• We want to work with φ̃(xi) = φ(xi) − 1

m

Pm
k=1

φ(xk)

• The corresponding kernel matrix entries are given by:

K̃(xk,xl) = φ̃(xl)
T φ̃(xj)

• After some algebra, we get:

K̃ = K − 211/mK + 11/mK11/m

where 11/m is the matrix with all elements equal to 1/m

November 26, 2007 10 COMP-652 Lecture 21



Summary of kernel PCA

1. Pick a kernel

2. Construct the normalized kernel matrix K̃ of the data (this will

be of dimension m × m)

3. Find the eigenvalues and eigenvectors of this matrix λj , aj

4. For any data point (new or old), we can represent it as the

following set of features:

yj =
mX

i=1

ajiK(x,xi), j = 1, . . . m

November 26, 2007 11 COMP-652 Lecture 21

Example: De-noising images

Original data

Data corrupted with Gaussian noise

Result after linear PCA

Result after kernel PCA, Gaussian kernel

November 26, 2007 12 COMP-652 Lecture 21



PCA vs Kernel PCA

• Kernel PCA can give a good re-encoding of the data when it lies

along a non-linear manifold

• The kernel matrix is m × m, so kernel PCA will have difficulties

if we have lots of data points

• In this case, we may need to use dictionary methods to pick a

subset of the data

• For general kernels, we may not be able to easily visualize what

the image of a point is in the input space

November 26, 2007 13 COMP-652 Lecture 21

Multi-dimensional scaling

• Input:

– An m × m dissimilarity matrix DS, where DS(i, j) is the

distance between instances xi and xj

– Desired dimension d of the embedding.

• Output:

– Coordinates zi ∈ "d for each instance i that minimize a

“stress” function quantifying the mismatch between distances

in DS and distances of the data representation in "d.

November 26, 2007 14 COMP-652 Lecture 21



Stress functions

Common stress functions include:

• The least-squares or Kruskal-Shephard criterion:

mX

i=1

X

j !=i

(DS(i, j) − ‖zi − zj‖)
2

• The Sammon mapping:

mX

i=1

X

j !=i

(DS(i, j) − ‖zi − zj‖)
2

DS(i, j)
,

which emphasizes getting small distances correct.

Gradient-based optimization is usually used to find zi

November 26, 2007 15 COMP-652 Lecture 21

Self-organizing maps

• If the instances are vectors in "n, try to stretch a “grid” of points

in n dimensions to approximate the data.

• The indices of the grid points indicate neighborhood

relationships

• E.g., in 2D, G(i, j) is neighbor with G(i − 1, j), G(i + 1, j),

G(i, j − 1), G(i, j + 1).

• The grid points are iteratively moved, ”pulled”, by data points,

similar to how the centroids of K-means clustering move

around.

• The data can then be visualized by mapping each object to the

nearest grid point.

November 26, 2007 16 COMP-652 Lecture 21



Self-organizing maps

• Inputs:

– A set D = {x1, . . . ,xm} of n-dimensional real vectors.

– A dimension for the grid (1,2 or 3 if we want to plot it.)

– Number of grid points along each dimension.

• Output: Coordinates G in "n for each grid-point.

November 26, 2007 17 COMP-652 Lecture 21

SOM learning algorithm

• Initialize the grid points.

• Repeat

– Choose a data point x at random.

– Find the nearest grid point; e.g., in 2D:

G(i∗, j∗) = arg min
i,j

‖G(i, j) − x‖

– Find the “neighborhood” of G∗(i, j)

– Move all pointsG in the neighborhood towards x:

G ← G + αs(x,G)(x − G)

where s(x,G) is a similarity function, equal to 1 if x = G

and decreasing with ‖x − G‖ (e.g. Gaussian)

November 26, 2007 18 COMP-652 Lecture 21



Example

November 26, 2007 19 COMP-652 Lecture 21

Remarks

• Typically the learning rate α → 0 with time

• The SOM builds a topographical map of the input space, putting

more points where the data is dense

• Instances that are close in the input space will be mapped to

units which are neighbors in the grid.

• If the data approximately lies on a curve or surface, the SOM

may capture that structure, but:

– Different runs can find different solutions.

– If we try to fit data on a 2D surface with a 1D grid, well. . .

• More sophisticated versions of SOMs use different updating

rules, different neighboring functions

November 26, 2007 20 COMP-652 Lecture 21


