
Lecture 20: Hierarchical Clustering. Dimensionality Reduction (I)

• Hierarchical clustering methods

• Overview of dimensionality reduction

• Principal component analysis

November 19, 2007 1 COMP-652 Lecture 20

Hierarchical clustering

• Organizes data instances into trees.

• For visualization, exploratory data analysis.

• Agglomerative methods build the tree bottom-up, successively

grouping together the clusters deemed most similar.

• Divisive methods build the tree top-down, recursively

partitioning the data.

November 19, 2007 2 COMP-652 Lecture 20

What is a hierarchical clustering?

• Given instances D = {x1, . . . ,xm}.

• A hierarchical clustering is a set of subsets (clusters) of D,

C = {C1, . . . , CK}, where

– Every element in D is in at least one set of C

– The Cj can be assigned to the nodes of a tree such that the

cluster at any node is precisely the union of the clusters at

the node’s children (if any).

November 19, 2007 3 COMP-652 Lecture 20

Example of a hierarchical clustering

• Suppose D = {1, 2, 3, 4, 5, 6, 7}.

• One hierarchical clustering is C =

{{1}, {2, 3}, {4, 5}, {1, 2, 3, 4, 5}, {6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

• In this example:

– Leaves of the tree need not correspond to single instances.

– The branching factor of the tree is not limited.

• However, most hierarchical clustering algorithms produce binary

trees, and take single instances as the smallest clusters.

November 19, 2007 4 COMP-652 Lecture 20

Agglomerative clustering

• Input: A set of instances and pairwise distances d(x,x′)

between them.

• Output: A hierarchical clustering

• Algorithm:

– Assign each instance as its own cluster on a working list W .

– Repeat

∗ Find the two clusters in W that are most “similar”.

∗ Remove them from W .

∗ Add their union to W .

Until W contains a single cluster with all the data objects.

– The hierarchical clustering contains all clusters appearing in

W at any stage of the algorithm.

November 19, 2007 5 COMP-652 Lecture 20

How do we measure dissimilarity between clusters?

• Distance between nearest objects (“Single-linkage”

agglomerative clustering, or “nearest neighbor”):

min
x∈C,x′∈C′

d(x,x′)

• Distance between farthest objects (“Complete-linkage”

agglomerative clustering, or “furthest neighbor”):

max
x∈C,x′∈C′

d(x,x′)

• Average distance between objects (“Group-average”

agglomerative clustering):

1
|C||C′|

X
x∈C,x′∈C′

d(x,x′)

November 19, 2007 6 COMP-652 Lecture 20

Dendrograms and monotonicity

• Single-linkage, complete-linkage and group-average

dissimilarity measure all share a monotonicity property:

– Let A, B, C be clusters.

– Let d be one of the dissimilarity measures.

– If d(A, B) < d(A, C) and d(A, B) < d(B, C), then

d(A, B) < d(A ∪ B, C).

• Implication: every time agglomerative clustering merges two

clusters, the dissimilarity of those clusters is ≥ the dissimilarity

of all previous merges.

• Dendrograms (trees depicting hierarchical clusterings) are often

drawn so that the height of a node corresponds to the

dissimilarity of the merged clusters.

November 19, 2007 7 COMP-652 Lecture 20

Example: Dendrogram for single-linkage clustering

 64 91 58 75 63 67 85 78 87 51 57 69 97100 60 82 94 98 53 59 66 93 73 52 71 55 86 62 99 65 79 89 80 54 72 83 56 81 92 96 61 88 68 70 74 95 76 77 84 90 1 17 18 5 20 13 34 37 45 41 3 11 28 40 43 6 14 32 9 23 12 47 4 46 7 10 33 48 19 35 16 22 44 36 38 49 2 15 26 27 30 39 50 29 25 8 31 24 21 42
0

0.05

0.1

November 19, 2007 8 COMP-652 Lecture 20

Example: Dendrogram for complete-linkage clustering

 64 91 85 60 82 94 98 51 57 69 97100 53 59 66 1 17 18 5 20 13 34 37 45 41 6 14 32 9 23 12 58 75 63 67 78 87 73 93 76 77 84 90 2 26 27 30 15 39 50 29 22 44 49 8 31 24 21 42 25 68 70 74 95 3 11 28 40 43 47 4 46 38 7 35 10 33 48 16 19 36 52 71 55 86 62 99 65 79 89 80 54 72 83 56 61 81 92 96 88
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

November 19, 2007 9 COMP-652 Lecture 20

Example: Dendrogram for average-linkage clustering

 64 91 85 60 82 94 98 51 57 69 97100 53 59 66 58 75 63 67 78 87 73 93 76 77 84 90 1 17 18 5 20 13 34 37 45 41 6 14 32 9 23 12 3 11 28 40 43 47 2 26 27 30 15 39 50 29 25 8 31 24 21 42 68 70 74 95 4 46 38 7 10 33 48 19 35 16 36 22 44 49 52 71 55 86 62 99 65 79 89 80 54 72 83 56 81 92 96 61 88
0

0.2

0.4

November 19, 2007 10 COMP-652 Lecture 20

Remarks

• We can form a flat clustering by cutting the tree at any height.

• Jumps in the height of the dendrogram can suggest natural

cutoffs.

November 19, 2007 11 COMP-652 Lecture 20

Divisive clustering

• Works by recursively partitioning the instances.

• But dividing such as to optimize one of the agglomerative

criteria is computationally hard!

• Many heuristics for partitioning the instances have been

proposed . . . but many violate monotonicity, making it hard to

draw dendrograms.

November 19, 2007 12 COMP-652 Lecture 20

What is dimensionality reduction?

• Dimensionality reduction (or embedding) techniques:

– Assign instances to real-valued vectors, in a space that is

much smaller-dimensional (even 2D or 3D for visualization).

– Approximately preserve similarity/distance relationships

between instances.

• Some techniques:

– Linear: Principal components analysis

– Non-linear

∗ Kernel PCA

∗ Independent components analysis

∗ Self-organizing maps

∗ Multi-dimensional scaling

November 19, 2007 13 COMP-652 Lecture 20

What is the true dimensionality of this data?

November 19, 2007 14 COMP-652 Lecture 20

What is the true dimensionality of this data?

November 19, 2007 15 COMP-652 Lecture 20

What is the true dimensionality of this data?

November 19, 2007 16 COMP-652 Lecture 20

What is the true dimensionality of this data?

November 19, 2007 17 COMP-652 Lecture 20

Remarks

• All dimensionality reduction techniques are based on an implicit

assumption that the data lies along some

low-dimensional manifold

• This is the case for the first three examples, which lie along a

1-dimensional manifold despite being plotted in 2D

• In the last example, the data has been generated randomly in

2D, so no dimensionality reduction is possible without losing

information

• The first three cases are in increasing order of difficulty, from the

point of view of existing techniques.

November 19, 2007 18 COMP-652 Lecture 20

Simple Principal Component Analysis (PCA)

• Given: m data objects, each a length-n real vector.

• Suppose we want a 1-dimensional representation of that data,

instead of n-dimensional.

• Specifically, we will:

– Choose a line in #n that “best represents” the data.

– Assign each data object to a point along that line.

November 19, 2007 19 COMP-652 Lecture 20

Which line is best?

?

?

?

November 19, 2007 20 COMP-652 Lecture 20

How do we assign points to lines?

?

November 19, 2007 21 COMP-652 Lecture 20

Reconstruction error

• Let our line be represented as b + αv for b,v ∈ #n, α ∈ #.

For later convenience, assume ‖v‖ = 1.

• Each instance xi is assigned a point on the line x̂i = b + αiv.

• We want to choose b, v, and the αi to minimize the total

reconstruction error over all data points, measured using

Euclidean distance:

R =
mX

i=1

‖xi − x̂i‖
2

November 19, 2007 22 COMP-652 Lecture 20

A constrained optimization problem!

min
Pm

i=1
‖xi − (b + αiv)‖2

w.r.t. b,v, αi, i = 1, . . . m

s.t. ‖v‖2 = 1

We write down the Lagrangian (see SVM lectures):

L(b,v, λ, α1, . . . αm) =
mX

i=1

‖xi − (b + αiv)‖2 + λ(‖v‖2 − 1)

=
mX

i=1

‖xi‖
2 + m‖b‖2 + ‖v‖2

mX
i=1

α2
i

− 2b
mX

i=1

xi − 2v
mX

i=1

αixi + 2bv

mX
i=1

αi

− λ‖v‖2 + λ

November 19, 2007 23 COMP-652 Lecture 20

Solving the optimization problem

• The most straightforward approach would be to write the KKT

conditions and solve the resulting equations

• Unfortunately, we get equations which have multiple variables in

them, and the resulting system is not linear (you can check this)

• Instead, we will fix v.

• For a given v, finding the best b and αi is now an

unconstrained optimization problem:

min R = min
mX

i=1

‖xi − (b + αiv)‖2

November 19, 2007 24 COMP-652 Lecture 20

Solving the optimization problem (II)

• We write the gradient of R wrt to αi and set it to 0:

∂R

∂αi
= 2‖v‖2αi − 2vxi + 2bv = 0 ⇒ αi = v · (xi − b)

where we take into account that ‖v‖2 = 1.

• We write the gradient of R wrt b and set it to 0:

∇bR = 2mb − 2
mX

i=1

xi + 2

mX

i=1

αi

!
v = 0 (1)

• From above:

mX
i=1

αi =
mX

i=1

v
T (xi − b) = v

T

mX

i=1

xi − mb

!
(2)

November 19, 2007 25 COMP-652 Lecture 20

Solving the optimization problem (III)

• By plugging (2) into (1) we get:

v
T

mX

i=1

xi − mb

!
v =

mX

i=1

xi − mb

!

• This is satisfied when:

mX
i=1

xi − mb = 0 ⇒ b =
1

m

mX
i=1

xi

• This means that the line goes through the mean of the data

• By substituting αi, we get:

x̂i = b + (vT (xi − b))v

• This means that instances are projected orthogonally on the line

to get the associated point.

November 19, 2007 26 COMP-652 Lecture 20

Example data

November 19, 2007 27 COMP-652 Lecture 20

Example with v ∝ (1, 0.3)

November 19, 2007 28 COMP-652 Lecture 20

Example with v ∝ (1,−0.3)

November 19, 2007 29 COMP-652 Lecture 20

Finding the direction of the line

• Substituting αi = v
T (xi − b) = (xi − b)T

v into our

optimization problem we obtain a new optimization problem:

minv

Pm
i=1

‖xi − b − (vT (xi − b))v‖2

s.t. ‖v‖2 = 1

• The optimization criterion can be re-written as:

mX
i=1

(‖xi−b‖2+α2
i ‖v‖

2−2αi(xi−b)T
v) =

mX
i=1

(‖xi−b‖2−α2
i)

• Hence, the we can solve the equivalent problem:

maxv

Pm
i=1

α2
i

s.t. ‖v‖2 = 1

November 19, 2007 30 COMP-652 Lecture 20

Finding the direction of the line

• Optimization problem re-written:

maxv

Pm
i=1

v
T (xi − b)(xi − b)T

v

s.t. ‖v‖2 = 1

• The Lagrangian is:

L(v, λ) =
mX

i=1

v
T (xi − b)(xi − b)T

v + λ − λ‖v‖2

• Let S =
Pm

i=1
(xi − b)(xi − b)T be an n-by-n matrix, which

we will call the scatter matrix

• The solution to the problem, obtained by setting ∇vL = 0, is:

Sv = λv.

November 19, 2007 31 COMP-652 Lecture 20

Optimal choice of v

• Recall: an eigenvector u of a matrix A satisfies Au = λu,

where λ ∈ # is the eigenvalue.

• Fact: the scatter matrix, S, has n non-negative eigenvalues and

n orthogonal eigenvectors.

• The equation obtained for v tells us that it should be an

eigenvector of S.

• The v that maximizes v
T Sv is the eigenvector of S with the

largest eigenvalue

November 19, 2007 32 COMP-652 Lecture 20

What is the scatter matrix

• S is an n × n matrix with

S(k, l) =
mX

i=1

(xi(k) − b(k))(xi(l) − b(l))

• Hence, S(k, l) is proportional to the estimated covariance

between the kth and lth dimension in the data.

November 19, 2007 33 COMP-652 Lecture 20

Recall: Covariance

• Covariance quantifies a linear relationship (if any) between two

random variables X and Y .

Cov(X, Y) = E{(X − E(X))(Y − E(Y))}

• Given m samples of X and Y , covariance can be estimated as

1
m

mX
i=1

(xi − µX)(yi − µY) ,

where µX = (1/m)
Pm

i=1
xi and µY = (1/m)

Pm
i=1

yi.

• Note: Cov(X, X) = V ar(X).

November 19, 2007 34 COMP-652 Lecture 20

Covariance example

0 5 10

0

5

10

Cov=7.6022

0 5 10

0

5

10

Cov=!3.8196

0 5 10

0

5

10

Cov=!0.12338

0 5 10

0

5

10

Cov=0.00016383

November 19, 2007 35 COMP-652 Lecture 20

Example with optimal line: b = (0.54, 0.52), v ∝ (1, 0.45)

November 19, 2007 36 COMP-652 Lecture 20

Remarks

• The line b + αv is the first principal component.

• The variance of the data along the line b + αv is as large as

along any other line.

• b, v, and the αi can be computed easily in polynomial time.

November 19, 2007 37 COMP-652 Lecture 20

Reduction to d dimensions

• More generally, we can create a d-dimensional representation

of our data by projecting the instances onto a hyperplane

b + α1
v1 + . . . + αd

vd.

• If we assume the vj are of unit length and orthogonal, then the

optimal choices are:

– b is the mean of the data (as before)

– The vj are orthogonal eigenvectors of S corresponding to its

d largest eigenvalues.

– Each instance is projected orthogonally on the hyperplane.

November 19, 2007 38 COMP-652 Lecture 20

Remarks

• b, the eigenvalues, the vj , and the projections of the instances

can all be computing in polynomial time.

• The magnitude of the jth-largest eigenvalue, λj , tells you how

much variability in the data is captured by the jth principal

component

• So you have feedback on how to choose d!

• When the eigenvalues are sorted in decreasing order, the

proportion of the variance captured by the first d components is:

λ1 + · · · + λd

λ1 + · · · + λd + λd+1 + · · · + λn

• So if a “big” drop occurs in the eigenvalues at some point, that

suggests a good dimension cutoff

November 19, 2007 39 COMP-652 Lecture 20

Example: λ1 = 0.0938,λ2 = 0.0007

November 19, 2007 40 COMP-652 Lecture 20

Example: λ1 = 0.1260,λ2 = 0.0054

November 19, 2007 41 COMP-652 Lecture 20

Example: λ1 = 0.0884,λ2 = 0.0725

November 19, 2007 42 COMP-652 Lecture 20

Example: λ1 = 0.0881,λ2 = 0.0769

November 19, 2007 43 COMP-652 Lecture 20

More remarks

• Outliers have a big effect on the covariance matrix, so they can

affect the eignevectors quite a bit

• A simple examination of the pairwise distances between

instances can help discard points that are very far away (for the

purpose of PCA)

• If the variances in the original dimensions vary considerably,

they can “muddle” the true correlations. There are two solutions:

– work with the correlation of the original data, instead of

covariance matrix

– normalize the input dimensions individually before PCA

• In certain cases, the eigenvectors are meaningful; e.g. in vision,

they can be displayed as images (“eigenfaces”)

November 19, 2007 44 COMP-652 Lecture 20

Uses of PCA

• Pre-processing for a supervised learning algorithm, e.g. for

image data, robotic sensor data

• Used with great success in image and speech processing

• Visualization

• Exploratory data analysis

• Removing the linear component of a signal (before fancier

non-linear models are applied)

November 19, 2007 45 COMP-652 Lecture 20

