
Lecture 17: Reinforcement learning (II)

• Markov Decision Processes

• Bellman equations for policy evaluation

• Model-based learning

• Temporal-Difference (TD) learning

• Eligibility traces

November 7, 2007 1 COMP-652 Lecture 17

Recall: Reinforcement Learning Problem

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

• At each discrete time t, the agent (learning system) observes

state st ∈ S and chooses action at ∈ A

• Then it receives an immediate reward rt+1 and the state

changes to st+1

November 7, 2007 2 COMP-652 Lecture 17

Recall: Policies and value functions

• The goal is to learn a policy π : S × A → [0, 1] which has a

high value at all states.

• One way to attack the problem is to search through policy

space, so we need to be able to evaluate a given policy

• We will focus on discounted return, so the value of a state s is

defined as:

V π(s) = Eπ [r1 + γr2 + . . . |s0 = s]

where γ ∈ (0, 1) is the probability of terminating at every step.

November 7, 2007 3 COMP-652 Lecture 17

Recall: Monte Carlo estimation

• Monte Carlo methods are supervised learning methods for

evaluating a policy

• The state is the input, the return obtained on trajectories

obtained using π is the desired output

• Function approximation is used to solve the regression problem.

• Choices include linear function approximators, discretization,

nearest neighbor, neural nets, ...

• Problem: variance of returns could be very high

• Can we use environment structure to lower the variance?

November 7, 2007 4 COMP-652 Lecture 17

Markov Decision Processes

• A general framework for non-linear optimal control, extensively

studied since the 1950s

• In optimal control

– Specializes to Riccati equations for linear systems

– Hamilton-Jacobi-Bellman equations for continuous-time

• In operations research

– Planning, scheduling, logistics, inventory control

– Sequential design of experiments

– Finance, marketing, queuing and telecommunications

• In Artificial intelligence (last 15 years)

– Probabilistic planning

November 7, 2007 5 COMP-652 Lecture 17

Markov Decision Processes (MDPs)

• Set of states S

• Set of actions A(s) available in each state s

• Markov assumption: st+1 and rt+1 depend only on st, at and

not on anything that happened before t

• Rewards:

ra
s = E {rt+1|st = s, at = a}

• Transition probabilities

P a
ss′ = P

`
st+1 = s′|st = s, at = a

´

• Rewards and transition probabilities form the model of the MDP

November 7, 2007 6 COMP-652 Lecture 17

Value function for a policy in an MDP

• A trajectory ξ is a sequence of states, actions and rewards:

s0, a0, r1, s1, a1, s2, . . .

• Let R(ξ) = r1 + γr2 + γ2r3 + . . . be the return obtained on

trajectory ξ

• The value of a state s is defined as:

V π(s) = Eπ

ˆ
r1 + γr2 + γ2r3 + . . . |s0 = s

˜

=
X

ξ:s0=s

P π(ξ)R(ξ)

=
X

a0,s1,...

[π(s, a0)P
a0

ss1
P π(ξ1)] [r1 + γR1(ξ1)]

where ξ1 = s1, a1, r2, s2, . . .

November 7, 2007 7 COMP-652 Lecture 17

Value function for a policy in an MDP (II)

V π(s) =
X

a0,s1,...

ˆ
π(s, a0)P

a0
ss1

Pπ(ξ1)
˜
[r1 + γR1(ξ1)]

=
X

a0,ξ1

ˆ
π(s, a0)P

a0
ss1

Pπ(ξ1)
˜
r1

+
X

a0,s1

X

ξ1:s1

ˆ
π(s, a0)P

a0
ss1

Pπ(ξ1)
˜
γR1(ξ1)

=
X

a

π(s, a)ra
s

X

ξ1

Pa0
ss1

Pπ(ξ1)

+ γ
X

a

X

s′

X

ξ1:s1=s′

π(s, a)Pa
ss′P

π(ξ1)R1(ξ1)

=
X

a

π(s, a)ra
s · 1 + γ

X

a

X

s′

π(s, a)Pa
ss′

X

ξ1:s1=s′

Pπ(ξ1)R1(ξ1)

=
X

a

π(s, a)ra
s + γ

X

a

X

s′

π(s, a)Pa
ss′V

π(s′) (def. in reverse)

November 7, 2007 8 COMP-652 Lecture 17

Bellman equations for policy evaluation

• The Bellman equations relate the value of a state to the value of

its successor states:

V π(s) =
X

a

π(s, a)ra
s + γ

X

s′

Pa
ss′V

π(s′), ∀s

• This is a system of |S| linear equations with |S| unknowns (the

values of each state)

• If the state set S and action set A are finite, we can represent

the system above in matrix-vector form

– The value functionV
π is a vector with |S| elements

– The reward model r is a vector of size |S||A|

– The transition model P is an |S||A|× |S| matrix

– The policy can be written as an |S| by |S||A| matrixΠ such

thatΠs,(s,a) = π(s, a), ∀s, a and all other elements are 0.

November 7, 2007 9 COMP-652 Lecture 17

Bellman equations for policy evaluation (II)

• Let rπ = Πr and P
π = PΠ

• We can re-write the Bellman equations in vector form as:

V
π = r

π + γP
π
V

π

• Now we can solve the system of equations:

(I − γP
π)Vπ = r

π

• If γ < 1, because P
π is a stochastic matrix (each row sums to

1, and all elements are positive), we can show that the

determinant of I − γP
π is non-zero

• Hence, the system has a unique solution:

V
π = (I − γP

π)−1
r

π = (I − γPΠ)−1
Πr

November 7, 2007 10 COMP-652 Lecture 17

Model-based reinforcement learning

• Usually, the model of the environment (r, P) is unknown

• Instead, the learner observes transitions and rewards in the

environment

• Model-based learning algorithms use this data to build an

approximate model r̂, P̂

• Note that this is just a supervised machine learning problem!

• In the simplest case, r̂ can be estimated as the mean reward for

every state-action pair, and P̂ can be estimated using counts.

• Then we pretend the approximate model is correct and use it to

compute the value function through the same system as above

• Very useful approach if the models have intrinsic value, can be

applied to new tasks (e.g. in robotics)

November 7, 2007 11 COMP-652 Lecture 17

Problems with the model-based approach

• If the state set S and action set A are very large or infinite, it will

be very hard to estimate the model from data, especially for the

transition probabilities, as we need many data points for every

matrix entry

• If P̂ has errors, these are amplified by the inversion operation

• Even if we can estimate the model, solving the system will be

very expensive

• So we need to approximate

November 7, 2007 12 COMP-652 Lecture 17

Approximate state representation

• Suppose that we represented every state s with a feature vector

φs, of size k ≤ |S|

• We can represent all the feature vectors, for all the state, in a

feature matrix Φ, of size k × |S|, where the sth column is φs

• Important special cases:

– If each column has exactly one element equal to 1 and all the

others are 0, the matrix represents a state partition, where

the state space has been partitioned in k disjoint subsets

– If each column has exactly l ≤ k elements equal to 1 and all

the others are 0, we have a CMAC with l overlapping tilings

• In general, the features (also called basis functions) can be

anything (Gaussian, sine-cosine, etc)

November 7, 2007 13 COMP-652 Lecture 17

Properties of the feature matrix

• We want Φ to have rank k (features that are linear

combinations of each other are useless)

• Because of the meaning ofΦ, as mapping states to features,

we have: ΦT
Φ = I

• This is because Φ
T
Φ is an |S|× |S| matrix, and we want it to

map states to themselves

November 7, 2007 14 COMP-652 Lecture 17

Bellman equations with features

• Consider the Bellman equations:

V
π = r

π + γP
π
V

π

• We multiply at the left byΦ:

ΦV
π = Φr

π + γΦP
π
V

π

• We makeΦV
π appear on the right hand side as well:

P
π
V

π = P
π
IV

π = P
π
Φ

T
ΦV

π

• Now we can re-write the Bellman equations:

ΦV
π = Φr

π+γΦP
π
Φ

T
ΦV

π ⇒ (I−γΦP
π
Φ

T)ΦV
π = Φr

π

November 7, 2007 15 COMP-652 Lecture 17

Approximate models

• We re-write the above equation as:

ΦV
π = (I − γΦP

π
Φ

T)−1
Φr

π

• Let r̂π = Φr
π; this is a vector of size k, representing the

reward for every feature

• E.g., in the special case of state partitioning, the reward

associated with a partition will be the sum of the rewards for the

states in that partition (why?)

• Let P̂π = ΦP
π
Φ

T ; this is a k × k matrix showing transitions

between features

• Since this is typically much smaller than the original matrix, it

can be estimated more accurately with less data

November 7, 2007 16 COMP-652 Lecture 17

Approximate value function

ΦV
π = (I − γΦP

π
Φ

T)−1
Φr

π

• Let V̂π = ΦV
π ; this is the approximation of the value function

using the features

• E.g., in the case of a state partition, each partition will have a

value associated with it, and all states in the partition share the

same value

• Obviously, not all value functions can be represented correctly

anymore.

• The Bellman equations for approximate values become:

V̂
π = (I − γP̂

π)r̂π

November 7, 2007 17 COMP-652 Lecture 17

Trade-off

• The above systems as k equations with k unknowns

• Model-based approximate methods will estimate r̂
π and P̂

π

from data

• The smaller k is, the less data we need to do this estimation,

and the easier it is to solve the system

• But the smaller k is, the less accurate will the value function be

November 7, 2007 18 COMP-652 Lecture 17

Using experience instead of dynamics

Consider a trajectory, with actions selected according to policy π:

The Bellman equation is:

V π(st) = Eπ [rt+1 + γV π(st+1)|st]

which suggests the dynamic programming update:

V (st) ← Eπ [rt+1 + γV (st+1)|st]

In general, we do not know this expected value, but we do have an

unbiased sample of it, rt+1 + γV (st+1)

In RL, we make an update towards the sample value, e.g. half-way

V (st) ←
1

2
V (st) +

1

2
(rt+1 + γV (st+1)

November 7, 2007 19 COMP-652 Lecture 17

Temporal-Difference (TD) Learning (Sutton, 1988)

We want to update the prediction for the value function based on its

change, i.e. temporal difference from one moment to the next

• Tabular TD(0):

V (st) ← V (st)+α (rt+1 + γV (st+1) − V (st)) ∀t = 0, 1, 2, . . .

• Gradient-descent TD(0):

If V is represented using a parametric function approximator,

e..g a neural network, with parameter θ:

θ ← θ+α (rt+1 + γV (st+1) − V (st))∇θV (st), ∀t = 0, 1, 2, . . .

November 7, 2007 20 COMP-652 Lecture 17

