
Lecture 16: Reinforcement learning (I)

• The reinforcement learning problem

• What to learn: policies and value functions

• Monte Carlo learning and its relationship to supervised learning

November 5, 2007 1 COMP-652 Lecture 16

The general problem: Control Learning

Consider learning to choose actions, e.g.,

• Robot learning to dock on battery charger

• Choose actions to optimize factory output

• Playing Backgammon, Go, Poker, ...

• Choosing medical tests and treatments

• Conversation

• Portofolio management

• Flying a helicopter

• Queue / router control

All of these are sequential decision making problems

November 5, 2007 2 COMP-652 Lecture 16



Reinforcement Learning Problem

Agent

Environment

action
atst

reward
rt

rt+1

st+1

state

• At each discrete time t, the agent (learning system) observes

state st ∈ S and chooses action at ∈ A

• Then it receives an immediate reward rt+1 and the state

changes to st+1

November 5, 2007 3 COMP-652 Lecture 16

Example: Backgammon (Tesauro, 1992-1995)

white pieces move 
   counterclockwise

1 2 3 4 5 6 7 8 9 10 11 12

18 17 16 15 14 13192021222324

    black pieces 
move clockwise

• The states are board positions in which the agent can move

• The actions are the possible moves

• Reward is 0 until the end of the game, when it is ±1 depending

on whether the agent wins or loses

November 5, 2007 4 COMP-652 Lecture 16



Supervised Learning

Training Info: Desired (target) Output

Supervised
Learning

Inputs Outputs

Error = (target output - actual output)

November 5, 2007 5 COMP-652 Lecture 16

Reinforcement Learning (RL)

Reinforcement
Learning

Inputs Outputs: actions

Training Info: Evaluations (rewards/penalties)

Objective: Get as much reward as possible

November 5, 2007 6 COMP-652 Lecture 16



Key Features of RL

• The learner is not told what actions to take, instead it find finds

out what to do by trial-and-error search

• The environment is stochastic

• The reward may be delayed, so the learner may need to

sacrifice short-term gains for greater long-term gains

• The learner had to balance the need to explore its environment

and the need to exploit its current knowledge

November 5, 2007 7 COMP-652 Lecture 16

The Power of Learning from Experience

• Expert examples are expensive and scarce

• Experience is cheap and plentiful!

November 5, 2007 8 COMP-652 Lecture 16



Agent’s Learning Task

Execute actions in environment, observe results, and learn policy

(strategy, way of behaving) π : S × A → [0, 1],

π(s, a) = P (at = a|st = s)

If the policy is deterministic, we will write it more simply as

π : S → A, with π(s) = a giving the action chosen in state s.

• Note that the target function is π : S → A but we have

no training examples of form 〈s, a〉

Training examples are of form 〈〈s, a〉, r, s′, . . . 〉

• Reinforcement learning methods specify how the agent should

change the policy π as a function of the rewards received over

time

November 5, 2007 9 COMP-652 Lecture 16

The objective: Maximize long-term return

Suppose the sequence of rewards received after time step t is

rt+1, rt+2 . . . . We want to maximize the expected return E[Rt]

for every time step t

• Episodic tasks: the interaction with the environment takes place

in episodes (e.g. games, trips through a maze etc)

Rt = rt+1 + rt+2 + · · · + rT

where T is the time when a terminal state is reached

November 5, 2007 10 COMP-652 Lecture 16



The objective: Maximize long-term return

Suppose the sequence of rewards received after time step t is

rt+1, rt+2 . . . . We want to maximize the expected return E{Rt}

for every time step t

• Discounted continuing tasks :

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞X

k=1

γt+k−1rt+k

where γ = discount factor for later rewards (between 0 and 1,

usually close to 1)

Sometimes viewed as an ”inflation rate” or ”probability of dying”

November 5, 2007 11 COMP-652 Lecture 16

The objective: Maximize long-term return

Suppose the sequence of rewards received after time step t is

rt+1, rt+2 . . . . We want to maximize the expected return E{Rt}

for every time step t

• Average-reward tasks:

Rt = lim
T→∞

1

T
(rt+1 + rt+2 + · · · + rT )

This represents the reward per time step.

November 5, 2007 12 COMP-652 Lecture 16



Example: Mountain-Car

Gravity

GOAL

• States: position and velocity

• Actions: accelerate forward, accelerate backward, coast

• We want the car to get to the top of the hill as quickly as possible

• What are the rewards and the return?

November 5, 2007 13 COMP-652 Lecture 16

Example: Mountain-Car

Gravity

GOAL

• States: position and velocity

• Actions: accelerate forward, accelerate backward, coast

• Two reward formulations:

– reward = −1 for every time step, until car reaches the top

– reward = 1 at the top, 0 otherwise γ < 1

• In both cases, the return is maximized by minimizing the

number of steps to the top of the hill

November 5, 2007 14 COMP-652 Lecture 16



Example: Pole Balancing

Avoid failure: pole falling beyond a given angle, or cart hitting the

end of the track

• Episodic task formulation: reward = +1 for each step before

failure

⇒ return = number of steps before failure

• Continuing task formulation: reward = -1 upon failure, 0

otherwise, γ < 1

⇒ return = −γk if there are k steps before failure

November 5, 2007 15 COMP-652 Lecture 16

Example: Pole Balancing

Avoid failure: pole falling beyond a given angle, or cart hitting the

end of the track

• Episodic task formulation: reward = +1 for each step before

failure

⇒ return = number of steps before failure

• Continuing task formulation: reward = -1 upon failure, 0

otherwise, γ < 1

⇒ return = −γk if there are k steps before failure

November 5, 2007 16 COMP-652 Lecture 16



Graduate school example

a = Apply to academia

Grad School

  (G)

Academia

    (A)
r=+1

0.9

0.1

Unemployed

(U)

Industry

   (I)

0.8 0.2

r=+10r=!0.1

0.9

0.1

0.5

0.5

r=!1

0.6

0.4

i

a

ig

n

n=Do Nothing

i = Apply to industry

g = Apply to grad school

What is the best policy?

November 5, 2007 17 COMP-652 Lecture 16

Finding a good policy

• The problem seems difficult to solve even for toy examples

• Since we do not have expert-labeled examples, ideas for

supervised learning do not apply immediately.

• One way to address the problem is to use

search for a good policy, in the space of all possible policies

• To do this, we need a measure of the quality of a policy

November 5, 2007 18 COMP-652 Lecture 16



State Value Function

• The value of a state s under policy π is the expected return

when starting from s and choosing actions according to π:

V π(s) = Eπ{R0 | s0 = s} = Eπ

(
∞X

k=1

γk−1rk | s0 = s

)

• If the state space is finite, the collection of values of all states,

V π , can be represented as a vector of size equal to the number

of states.

• This vector is called the state-value function

November 5, 2007 19 COMP-652 Lecture 16

State-action value function

• Analogously, the value of taking action a in state s under

policy π is:

Qπ(s, a) = Eπ

(
∞X

k=1

γk−1rk | s0 = s, a0 = a

)

• Qπ can be represented as a matrix of size |S|× |A|; this is

called the action-value function

November 5, 2007 20 COMP-652 Lecture 16



Policies and value functions

• Value functions define a partial order over policies:

π1 ≥ π2 if and only if V π1(s) ≥ V π2(s)∀s ∈ S

• So a policy is “better” than another policy if and only if it

generates at least the same amount of return at all states

• If π1 has higher value than π2 at some states and lower value at

other, the two policies are not comparable.

• Computing the value of a policy will be helpful in searching for it.

November 5, 2007 21 COMP-652 Lecture 16

Monte Carlo Methods

• Suppose we have an episodic task

• The agent behaves according to some policy π for a while,

generating several trajectories.

• Compute V π(s) by averaging the observed returns after s on

the trajectories in which s was visited.

• Two main approaches:

– Every-visit: average returns for every time a state is visited

in an episode

– First-visit: average returns only for the first time a state is

visited in an episode

November 5, 2007 22 COMP-652 Lecture 16



Implementation of Monte Carlo Policy Evaluation

Suppose that we have n + 1 returns from state s

V n+1(s) =
1

n + 1

n+1X
i=1

Ri(s) =
1

n + 1

 
nX

i=1

Ri(s) + Rn+1(s)

!

=
n

n + 1

1

n

nX
i=1

Ri(s) +
1

n + 1
Rn+1(s)

=
n

n + 1
V n(s) +

1

n + 1
Rn+1(s)

= V n(s) +
1

n + 1

`
Rn+1(s) − V n(s)

´

If we do not want to keep counts of how many times states have

been visited, we can use a learning rate version:

V (st) ← V (st) + αt(Rt − V (st))

November 5, 2007 23 COMP-652 Lecture 16

Monte Carlo estimation of action values

• We use the same idea: Qπ(s, a) is the average of the returns

obtained by starting in state s, doing action a and then choosing

actions according to π

• Like the state-value version, it converges asymptotically

if every state-action pair is visited

• But π might not choose every action in every state!

• Exploring starts: Every state-action pair has a non-zero

probability of being the starting pair

November 5, 2007 24 COMP-652 Lecture 16



Representing value functions

• If the state space is finite, V π can be represented as an array

with one entry for every state

• If the state space is infinite, use your favorite function

approximator that can represent real-values functions:

– Linear function approximator, with non-linear basis functions

– Nearest neighbor

– Neural networks

– Locally weighted regression

– Regression trees

– ...

• Some choices are better than others, theoretically and in

practice.

November 5, 2007 25 COMP-652 Lecture 16

Sparse, coarse coding

Main idea: we want linear function approximators (because they

have good convergence guarantees, as we will see later) but with

lots of features, so they can represent complex functions

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

• Coarse means that the receptive fields are typically large

• Sparse means that just a few units are active ar any given time

E.g., CMACs, sparse distributed memories etc.

November 5, 2007 26 COMP-652 Lecture 16


