
Lecture 11: Learning theory

• True error of a hypothesis
• Probably Approximately Correct (PAC) model
• VC-dimension
• Other computational learning theory models
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Binary classification: The golden goal

Given:

• The set of all possible instances X
• A target function (or concept) f : X → {0, 1}
• A set of hypotheses H
• A set of training examples D (containing positive and negative

examples of the target function)

〈x1, f(x1)〉, . . . 〈xm, f(xm)〉

Determine:

A hypothesis h ∈ H such that h(x) = f(x) for all x ∈ X.
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Approximate Concept Learning

• Requiring a learner to acquire the right concept is too strict
• Instead, we will allow the learner to produce a good approximation to

the actual concept
• For any instance space, there is a non-uniform likelihood of seeing

different instances
• We assume that there is a fixed probability distribution P on the

space of instances X
• The learner is trained and tested on examples whose inputs are

drawn independently and randomly according to P .
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Recall: Two Notions of Error

• The training error of hypothesis h with respect to target concept f
estimates how often h(x) 6= f(x) over the training instances
• The true error of hypothesis h with respect to target concept f

estimates how often h(x) 6= f(x) over future, unseen instances (but
drawn according to P )
• Questions:

– Can we bound the true error of a hypothesis given only its training
error?

– How many examples are needed for a good approximation? This
is called the sample complexity of the problem
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True Error of a Hypothesis
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True Error Definition

• The set of instances on which the target concept and the hypothesis
disagree is denoted: S = {x|h(x) 6= f(x)}
• The true error of h with respect to f is:∑

x∈S

P (x)

This is the probability of making an error on an instance randomly
drawn from X according to P
• Let ε ∈ (0, 1) be an error tolerance parameter. We say that h is a

good approximation of f (to within ε) if and only if the true error of h
is less than ε.
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Example: Rote Learner

• Let X = {0, 1}n. Let P be the uniform distribution over X.
• Let the concept f be generated by randomly assigning a label to

every instance in X.
• Let D ⊂ X be a set of training instances.

The hypothesis h is generated by memorizing D and giving a random
answer otherwise.

• What is the training error of h?
• What is the true error of h?
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Empirical risk minimization

• Suppose we are given a hypothesis class H
• We have a magical learning machine that can sift through H and

output the hypothesis with the smallest training error, hemp
• This is process is called empirical risk minimization
• Is this a good idea?
• What can we say about the error of the other hypotheses in h?
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First tool: The union bound

• Let E1 . . . Ek be k different events (not necessarily independent).
Then:

P (E1 ∪ · · · ∪ Ek) ≤ P (E1) + · · ·+ P (Ek)

• Note that this is usually loose, as events may be correlated
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Second tool: Hoeffding bound

• Let Z1 . . . Zm be m independent identically distributed (iid) binary
variables, drawn from a Bernoulli (binomial) distribution:

P (Zi = 1) = φ and P (Zi = 0) = 1− φ

• Let φ̂ be the mean of these variables:φ̂ = 1
m

∑m
i=1Zi

• Let ε be a fixed error tolerance parameter. Then:

P (|φ− φ̂| > ε) ≤ 2e−2ε2m

• In other words, if you have lots of examples, the empirical mean is a
good estimator of the true probability.
• Note: other similar concentration inequalities can be used (e.g.

Chernoff, Bernstein, etc.)
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Finite hypothesis space

• Suppose we are considering a finite hypothesis class H =
{h1, . . . hk} (e.g. conjunctions, decision trees,...)
• Take an arbitrary hypothesis hi ∈ H
• Suppose we sample data according to our distribution and let Zj =

1 iff hi(xj) 6= yj
• So e(hi) (the true error of hi) is the expected value of Zj
• Let ê(hi) = 1

m

∑m
j=1Zj (this is the empirical training error of hi on the

data set we have)
• Using the Hoeffding bound, we have:

P (|e(hi)− ê(hi)| > ε) ≤ 2e−2ε2m

• So, if we have lots of data, the training error of a hypothesis hi will be
close to its true error with high probability.
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What about all hypotheses?

• We showed that the empirical error is “close” to the true error for one
hypothesis.
• Let Ei denote the event |e(hi)− ê(hi)| > ε

• Can we guarantee this is true for all hypothesis?

P (∃hi ∈ H, |e(hi)− ê(hi)| > ε) = P (E1 ∪ . . . Ek)

≤
k∑
i=1

P (Ei) (union bound)

≤
k∑
i=1

2e−2ε2m (shown before)

= 2ke−2ε2m
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A uniform convergence bound

• We showed that:

P (∃hi ∈ H, |e(hi)− ê(hi)| > ε) ≤ 2ke−2ε2m

• So we have:

1− P (∃hi ∈ H, |e(hi)− ê(hi)| > ε) ≥ 1− 2ke−2ε2m

or, in other words:

P (∀hi ∈ H, |e(hi)− ê(hi)| < ε) ≥ 1− 2ke−2ε2m

• This is called auniform convergence result because the bound holds
for all hypotheses
• What is this good for?
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Sample complexity

• Suppose we want to guarantee that with probability at least 1− δ, the
sample (training) error is within ε of the true error.

• From our bound, we can set δ ≥ 2ke−2ε2m

• Solving for m, we get that the number of samples should be:

m ≥ 1
2ε2

log
2k
δ

=
1

2ε2
log

2|H|
δ

• So the number of samples needed is logarithmic in the size of the
hypothesis space
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Example: Conjunctions of Boolean Literals

• Let H be the space of all pure conjunctive formulae over n Boolean
attributes. Then |H| = 3n (why?)
• From the previous result, we get:

m ≥ 1
2ε2

log
2|H|
δ

= n
1

2ε2
log

6
δ

• This is linear in n!
• Hence, conjunctions are “easy to learn”
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Another application: Bounding the true error

• Our inequality revisited:

P (∀hi ∈ H, |e(hi)− ê(hi)| < ε) ≥ 1− 2ke−2ε2m = 1− δ

• Suppose we hold m and δ fixed, and we solve for ε. Then we get:

|e(hi)− ê(hi)| ≤
√

1
2m

log
2k
δ

inside the probability term.
• Can we now prove anything about the generalization power of the

empirical risk minimization algorithm?
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Empirical risk minimization
Let h∗ be the best hypothesis in our class (in terms of true error). Based
on our uniform convergence assumption, we can bound the true error
of hemp as follows:

e(hemp) ≤ ê(hemp) + ε

≤ ê(h∗) + ε (because hemp has better training error

than any other hypothesis)

≤ e(h∗) + 2ε (by using the result on h∗)

≤ e(h∗) + 2

√
1

2m
log

2|H|
δ

(from previous slide)

This bounds how much worse hemp is, wrt the best hypothesis we can
hope for!
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Bias and variance revisited

• We showed that, given m examples, with probability at least 1− δ,

e(hemp) ≤
(

min
h∈H

e(h)
)

+ 2

√
1

2m
log

2|H|
δ

• Suppose now that we are considering two hypothesis classes H ⊆
H ′

– The first term would be smaller for H ′ (we have a larger hypothesis
class, hence less “bias”)

– The second term would be larger (the “variance” is increasing)
• Note, though, that if H is infinite, this result is not very useful...
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Example: Learning an interval on the real line

• “Treatment plant is ok iff Temperature ≤ a” for some unknown a ∈
[0, 100]
• Consider the hypothesis set:

H = {[0, a]|a ∈ [0, 100]}

• Simple learning algorithm: Observe m samples, and return [0, b],
where b is the largest positive example seen
• Clearly the processing time per example is polynomial. But how

many examples do we need to find a good approximation of the true
hypothesis?
• Our previous result is useless, since the hypothesis class is infinite.
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Sample complexity of learning an interval

• Let a correspond to the true concept and let c < a be a real value s.t.
[c, a] has probability ε.
• If we see an example in [c, a], then our algorithm succeeds in having

true error smaller than ε
• What is the probability of seeing m iid examples outside of [c, a]?

P (failure) = (1− ε)m

• If we want
P (failure) < δ =⇒ (1− ε)m < δ
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Example continued

• Fact:
(1− ε)m ≤ e−εm (you can check that this is true)

• Hence, it is sufficient to have

(1− ε)m ≤ e−εm < δ

• Using this fact, we get:

m ≥ 1
ε

log
1
δ

• You can check empirically that this is a fairly tight bound.
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Why do we need so few samples?

• Our hypothesis space is simple - there is only one parameter to
estimate!
• In other words, there is one “degree of freedom”
• As a result, every data sample gives information about LOTS of

hypothesis!
• What if there are more “degrees of freedom”?
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Example: Learning two-sided intervals

• Suppose the target concept and hypothesis class are positive inside
[a, b].
• Our guess interval is [min(x,+) x,max(x,+) x]
• We can make errors on either side of the interval, if we get no

example within ε of the true value.
• The probability of an example outside of an ε-size interval is 1− ε
• The probability of m examples outside of it is (1− ε)m

• The probability this happens on either side is ≤ 2(1 − ε)m ≤ 2e−εm,
and we want this to be < δ
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Example continued

• If we extract the number of samples we get:

m ≥ 1
ε

ln
2
δ

• Compare this with the bound in the finite case:

m ≥ 1
2ε2

log
2|H|
δ

• But for us, |H| =∞!
• We need a way to characterize the “complexity” of infinite-

dimensional classes of hypotheses
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Shattering a set of instances

• A dichotomy of a set S is a partition of S into two disjoint subsets.
• A set of instances D is shattered by hypothesis space H if and

only if for every dichotomy of D there exists some hypothesis in H
consistent with this dichotomy.
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Example: Three instances
Can these three points be shattered by the hypothesis space

consisting of a set of circles?
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Example: Three instances
Can these three points be shattered by the hypothesis space

consisting of a set of circles?
+ +

+
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Example: Three instances
Can these three points be shattered by the hypothesis space

consisting of a set of circles?

+ +

+
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Example: Three instances
Can these three points be shattered by the hypothesis space

consisting of a set of circles?
+ !

+
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Example: Three instances
Can these three points be shattered by the hypothesis space

consisting of a set of circles?

+ !

+
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Example: Three instances
Can three points be shattered by the hypothesis space consisting of

a set of circles?

+
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Example: Three instances
Can three points be shattered by the hypothesis space consisting of

a set of circles?

+
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Example: Three instances
Can three points be shattered by the hypothesis space consisting of

a set of circles?
! !

!

What about 4 points?
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Example: Four instances

• These cannot be shattered, because we can label the farther 2 points
as +, and the circle that contains them will necessarily contain the
other points
• So circles can shatter one data set of three points (the one we’ve

been analyzing), but there is no set of four points that can be
shattered by circles (check this by yourself!)
• Note that not all sets of size 3 can be shattered!
• We say that the VC dimension of circles is 3
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The Vapnik-Chervonenkis (VC) Dimension

• The Vapnik-Chervonenkis dimension, V C(H), of hypothesis space
H defined over instance space X is the size of the largest finite
subset of X shattered by H. If arbitrarily large finite sets of X can be
shattered by H, then V C(H) ≡ ∞.
• In other words, the VC dimension is the maximum number of points

for which H is unbiased.
• VC dimension measures how many distinctions the hypotheses from
H are able to make
• This is, in some sense, the number of “effective degrees of freedom”
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Establishing the VC dimension

• Play the following game with the enemy:
– You are allowed to choose k points. This actually gives you a lot of

freedom!
– The enemy then labels these points any way it wants
– You now have to produce a hypothesis, out of your hypothesis

class, which correctly produces these labels.
If you are able to succeed at this game, the VC dimension is at least
k.
• To show that it is no greater than k, you have to show that for any set

of k+1 points, the enemy can find a labeling that you cannot correctly
reproduce with any of your hypotheses.
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Example revisited: VC dimension of intervals

• Can we shatter 2 points on a line with an interval?
• Can we shatter 3 points on a line with one interval?
• What is the VC dimension of intervals?

COMP-652, Lecture 11 - October 19, 2009 37



Example revisited: VC dimension of intervals

• Can we shatter 2 points on a line with an interval?
Yes!
• Can we shatter 3 points on a line with one interval?

No! The enemy can label the most distant points + and the middle
one −
• What is the VC dimension of intervals?

VC dimension is 2
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VC dimension of linear decision surfaces

• Consider a linear threshold unit in the plane.
• First, show there exists a set of 3 points that can be shattered by a

line =⇒ VC dimension of lines in the plane is at least 3.
• To show it is at most 3, show that NO set of 4 points can be shattered.
• For an n-dimensional space, VC dimension of linear estimators is
n+ 1.
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Applying VC theory to feed-forward networks

• Let HG be the class of functions that can be computed by
feed-forward networks of perceptrons (also known as multi-layer
perceptrons) defined on a fixed underlying graph G with E edges
and N ≥ 2 linear threshold nodes.
• Then it can be shown that V C(HG) ≤ 2(E +N) log(eN).
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And the bad news...

• Sigmoid-like functions can have infinite VC dimension! E.g.

1
1 + e−x

+ cx3e−x
2
sinx

(see Macintyre and Sontag, 1993).
• However: the usual sigmoid function, as well as the hyperbolic

tangent, have finite VC dimension! :-)
• But: it is doubly exponential... :-(
• However, in practice, neural networks seem to approximate well even

with a lot fewer examples (sometimes fewer than the number of
weights).
• Alternative analyses (see, e.g. Bartlett, 1996) suggest that the error

may be related to the magnitude of the weights, rather than the
number of weights, if the nodes are kept in their linear regions.
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Error bounds using VC dimension

• Recall our error bound in the finite case:

e(hemp) ≤
(

min
h∈H

e(h)
)

+ 2

√
1

2m
log

2|H|
δ

• Vapnik showed a similar result, but using VC dimension instead of
the size of the hypothesis space:
• For a hypothesis class H with VC dimension V C(H), given m

examples, with probability at least 1− δ, we have:

e(hemp) ≤
(

min
h∈H

e(h)
)

+O

√V C(H)
m

log
m

V C(H)
+

1
m

log
1
δ
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Remarks on VC dimension

• The previous bound is tight up to log factors. In other words, for
hypotheses classes with large VC dimension, we can show that there
exists some data distribution which will produce a bad approximation.
• For many reasonable hypothesis classes (e.g. linear approximators)

the VC dimension is linear in the number of “parameters” of the
hypothesis.
• This shows that to learn “well”, we need a number of examples that

is linear in the VC dimension (so linear in the number of parameters,
in this case).
• An important property: if H1 ⊆ H2 then V C(H1) ≤ V C(H2).
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Structural risk minimization

e(hemp) ≤
(

min
h∈H

e(h)
)

+O

√V C(H)
m

log
m

V C(H)
+

1
m

log
1
δ


• We have used this bound to measure the true error of the hypothesis

with the smallest training error
• Why not use the bound directly to get the best hypothesis?
• We can measure the training error, and add to that the quantity

suggested by the rightmost term
• We pick the hypothesis that is best in terms of this sum!
• This approach is called structural risk minimization, and can be used

instead of crossvalidation or MDL to pick the best hypothesis class
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Probably Approximately Correct (PAC) Learning
Let F be a concept (target function) class defined over a set of
instances X in which each instance has length n. An algorithm L, using
hypothesis class H is a PAC learning algorithm for F if:

• for any concept f ∈ F
• for any probability distribution P over X
• for any parameters 0 < ε < 1/2 and 0 < δ < 1/2

the learner L will, with probability at least (1 − δ), output a hypothesis
with true error at most ε.

A class of concepts F is PAC-learnable if there exists a PAC learning
algorithm for F .
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Computational vs Sample Complexity

• A class of concepts is polynomial-sample PAC-learnable if it is PAC
learnable using a number of examples at most polynomial in 1

ε ,
1
δ and

n.
• A class of concepts is polynomial-time PAC-learnable if it is PAC

learnable in time at most polynomial in 1
ε ,

1
δ and n.

• Sample complexity is often easier to bound than time complexity!
• Sometimes there is a trade-off between the two (if there are more

samples, less work is required to process each one and vice versa)
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Bird Eye View of Computational Learning Theory

1. How hard is it to learn (in terms of the computation required)?
Difficult to answer in general, but results have been established for
some problems (e.g. learning CNF and DNF formulae)

2. How many examples are required for a good approximation?
A lot of results here, regarding sample complexity bounds for different
algorithms

3. What problems can be solved by a given algorithm?
Little work done here so far.
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Different Models of Learning

• Examples come randomly from some fixed distribution (the case
usually considered in supervised learning)
• The learner is allowed to ask questions to the teacher (active

learning) - we will look at this again later
• Examples are given by an opponent (on-line learning, mistake-bound

model)

Most of the time the results assume that the examples are noise-free.
However, results do exist for particular kinds of noise (e.g. noise in the
target value).
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Summary

• The complexity results for binary classification show trade-offs
between the desired degree of precision ε, the number of samples
m and the complexity of the hypothesis space H
• The complexity of H can be measured by the VC dimension
• For a fixed hypothesis space, minimizing the training set error is well

justified (empirical risk minimization)
• We have not talked about

– Relationship between margin and VC dimension (better bounds
than the results discussed)

– Lower bounds
– ...
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