Lecture 9: Large Margin Classifiers. Linear Support Vector Machines

- Perceptrons
 - Definition
 - Perceptron learning rule
 - Convergence

- Margin & max margin classifiers

- (Linear) support vector machines
 - Formulation as optimization problem
 - Generalized Lagrangian and dual
 - Allowing for noise (soft margins)
 - Solving the dual: SMO
Perceptrons

• Consider a binary classification problem with data \(\{x_i, y_i\}_{i=1}^{m}, y_i \in \{-1, +1\} \).

• A perceptron is a classifier of the form:

\[
h_{w,w_0}(x) = sgn(w \cdot x + w_0) = \begin{cases}
+1 & \text{if } w \cdot x + w_0 \geq 0 \\
-1 & \text{otherwise}
\end{cases}
\]

Here, \(w \) is a vector of weights, “\(\cdot \)” denotes the dot product, and \(w_0 \) is a constant offset.

• The decision boundary is \(w \cdot x + w_0 = 0 \).

• Perceptrons output a class, not a probability

• An example \(\langle x, y \rangle \) is classified correctly iff:

\[
y(w \cdot x + w_0) > 0
\]
A gradient descent-like learning rule

- Consider the following procedure:
 1. Initialize w and w_0 randomly
 2. While any training examples remain incorrectly classified
 (a) Loop through all misclassified examples
 (b) For misclassified example i, perform the updates:

\[
\begin{align*}
 w &\leftarrow w + \gamma y_i x_i, \\
 w_0 &\leftarrow w_0 + \gamma y_i
\end{align*}
\]

 where γ is a step-size parameter.
- The update equation, or sometimes the whole procedure, is called the \textit{perceptron learning rule}.
- Intuition: Yes, for examples misclassified as negative, increase $w \cdot x_i + w_0$, for examples misclassified as positive, it decrease it
Gradient descent interpretation

- The perceptron learning rule can be interpreted as a gradient descent procedure, but with the following *perceptron criterion function*

\[
J(w, w_0) = \sum_{i=1}^{m} \begin{cases}
0 & \text{if } y_i(w \cdot x_i + w_0) \geq 0 \\
-y_i(w \cdot x_i + w_0) & \text{if } y_i(w \cdot x_i + w_0) < 0
\end{cases}
\]

- For correctly classified examples, the error is zero.
- For incorrectly classified examples, the error is by how much \(w \cdot x_i + w_0\) is on the wrong side of the decision boundary.
- \(J\) is piecewise linear, so it has a gradient almost everywhere; the gradient gives the perceptron learning rule.
- \(J\) is zero iff all examples are classified correctly – just like the 0-1 loss function.
Linear separability

- The data set is *linearly separable* if and only if there exists w, w_0 such that:
 - For all i, $y_i (w \cdot x_i + w_0) > 0$.
 - Or equivalently, the 0-1 loss is zero.
Perceptron convergence theorem

- The *perceptron convergence theorem* states that if the perceptron learning rule is applied to a linearly separable data set, a solution will be found after some finite number of updates.
- The number of updates depends on the data set, and also on the step size parameter.
- If the data is not linearly separable, there will be oscillation (which can be detected automatically).
Perceptron learning example—separable data

\[w = [0 \ 0] \quad w_0 = 0 \]
Perceptron learning example–separable data

\[w = \begin{bmatrix} 4.111 & 3.8704 \end{bmatrix} \quad w_0 = -4 \]
Weight as a combination of input vectors

- Recall perceptron learning rule:
 \[
 w \leftarrow w + \gamma y_i x_i, \quad w_0 \leftarrow w_0 + \gamma y_i
 \]

- If initial weights are zero, then at any step, the \textit{weights are a linear combination of feature vectors}:
 \[
 w = \sum_{i=1}^{m} \alpha_i x_i, \quad w_0 = \sum_{i=1}^{m} \alpha_i y_i
 \]

 where \(\alpha_i \) is the sum of step sizes used for all updates based on example \(i \).

- This is called the \textit{dual representation} of the classifier.

- Even by the end of training, some example may have never participated in an update.
Example used (bold) and not used (faint) in updates

\[w = [4.111 \ 3.8704] \quad w_0 = -4 \]
Comment: Solutions are nonunique

\[w = [2.1395, 1.9372] \quad w_0 = -2 \]
Perceptron summary

- Perceptrons can be learned to fit linearly separable data, using a gradient descent rule.
- There are other fitting approaches – e.g., formulation as a linear constraint satisfaction problem / linear program.
- Solutions are non-unique.
- Logistic neurons are often thought of as a “smooth” version of a perceptron.
- For non-linearly separable data:
 - Perhaps data can be linearly separated in a different feature space?
 - Perhaps we can relax the criterion of separating all the data?
Support Vector Machines

- Support vector machines (SVMs) for binary classification can be viewed as a way of training perceptrons
- There are three main new ideas:
 - An alternative optimization criterion (the “margin”), which eliminates the non-uniqueness of solutions and has theoretical advantages
 - A way of handling nonseparable data by allowing mistakes
 - An efficient way of operating in expanded feature spaces – the “kernel trick”
- SVMs can also be used for multiclass classification and regression.
Returning to the non-uniqueness issue

• Consider a linearly separable binary classification data set \(\{x_i, y_i\}_{i=1}^m \).

• There is an infinite number of hyperplanes that separate the classes:

 ![Diagram of hyperplanes separating classes]

 Which plane is best?

 Relatedly, for a given plane, for which points should we be most confident in the classification?
The margin, and linear SVMs

- For a given separating hyperplane, the margin is two times the (Euclidean) distance from the hyperplane to the nearest training example.
- It is the width of the “strip” around the decision boundary containing no training examples.
- A linear SVM is a perceptron for which we choose w, w_0 so that margin is maximized
Distance to the decision boundary

• Suppose we have a decision boundary that separates the data.

• Let γ_i be the distance from instance x_i to the decision boundary.
• How can we write γ_i in term of x_i, y_i, w, w_0?
Distance to the decision boundary (II)

- The vector \mathbf{w} is normal to the decision boundary. Thus, $\frac{\mathbf{w}}{||\mathbf{w}||}$ is the unit normal.
- The vector from the B to A is $\gamma_i \frac{\mathbf{w}}{||\mathbf{w}||}$.
- B, the point on the decision boundary nearest \mathbf{x}_i, is $\mathbf{x}_i - \gamma_i \frac{\mathbf{w}}{||\mathbf{w}||}$.
- As B is on the decision boundary,

$$\mathbf{w} \cdot \left(\mathbf{x}_i - \gamma_i \frac{\mathbf{w}}{||\mathbf{w}||} \right) + w_0 = 0$$

- Solving for γ_i yields, for a positive example:

$$\gamma_i = \frac{\mathbf{w}}{||\mathbf{w}||} \cdot \mathbf{x}_i + \frac{w_0}{||\mathbf{w}||}$$
The margin

- The *margin of the hyperplane* is $2M$, where $M = \min_{i} \gamma_{i}$
- The most direct statement of the problem of finding a maximum margin separating hyperplane is thus
 \[
 \max_{w,w_0} \min_{i} \gamma_{i} \\
 \equiv \max_{w,w_0} \min_{i} y_{i} \left(\frac{w}{||w||} \cdot x_{i} + \frac{w_{0}}{||w||} \right)
 \]
- This turns out to be inconvenient for optimization, however...
Treating the γ_i as constraints

- From the definition of margin, we have:

$$M \leq \gamma_i = y_i \left(\frac{w}{||w||} \cdot x_i + \frac{w_0}{||w||} \right) \quad \forall i$$

- This suggests:

$$\text{maximize} \quad M$$

$$\text{with respect to} \quad w, w_0$$

$$\text{subject to} \quad y_i \left(\frac{w}{||w||} \cdot x_i + \frac{w_0}{||w||} \right) \geq M \quad \text{for all } i$$
Treating the γ_i as constraints

- From the definition of margin, we have:

$$M \leq \gamma_i = y_i \left(\frac{w}{\|w\|} \cdot x_i + \frac{w_0}{\|w\|} \right) \quad \forall i$$

- This suggests:

 maximize M

 with respect to w, w_0

 subject to $y_i \left(\frac{w}{\|w\|} \cdot x_i + \frac{w_0}{\|w\|} \right) \geq M$ for all i

- Problems:
 - w appears nonlinearly in the constraints.
 - This problem is underconstrained. If (w, w_0, M) is an optimal solution, then so is $(\beta w, \beta w_0, M)$ for any $\beta > 0$.
Adding a constraint

- Let’s try adding the constraint that $\|w\|_M = 1$.
- This allows us to rewrite the objective function and constraints as:
 \[
 \min_{w, w_0} \|w\| \\
 \text{s.t. } y_i (w \cdot x_i + w_0) \geq 1
 \]
- This is really nice because the constraints are linear.
- The objective function $\|w\|$ is still a bit awkward.
Final formulation

- Let’s maximize $\|w\|^2$ instead of $\|w\|$. (Taking the square is a monotone transformation, as $\|w\|$ is positive, so this doesn’t change the optimal solution.)

- This gets us to:

 $$\min_{w, w_0} \|w\|^2$$

 w.r.t. w, w_0

 s.t. $y_i(w \cdot x_i + w_0) \geq 1$

- This we can solve! How?
Final formulation

• Let’s maximize $\|w\|^2$ instead of $\|w\|$.
 (Taking the square is a monotone transformation, as $\|w\|$ is positive, so this doesn’t change the optimal solution.)

• This gets us to:

 $$\min \, \|w\|^2$$

 w.r.t. w, w_0

 s.t. $y_i (w \cdot x_i + w_0) \geq 1$

• This we can solve! How?
 – It is a *quadratic programming* (QP) problem—a standard type of optimization problem for which many efficient packages are available.
 – Better yet, it’s a convex (positive semidefinite) QP
Example

We have a solution, but no support vectors yet...
Lagrange multipliers for inequality constraints
(revisited)

• Suppose we have the following optimization problem, called *primal*:

\[
\min_w f(w) \\
\text{such that } g_i(w) \leq 0, \ i = 1 \ldots k
\]

• We define the *generalized Lagrangian*:

\[
L(w, \alpha) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w), \quad (1)
\]

where \(\alpha_i, \ i = 1 \ldots k\) are the Lagrange multipliers.
A different optimization problem

• Consider $\mathcal{P}(w) = \max_{\alpha: \alpha_i \geq 0} L(w, \alpha)$

• Observe that the folow is true. Why?

\[
\mathcal{P}(w) = \begin{cases}
 f(w) & \text{if all constraints are satisfied} \\
 +\infty & \text{otherwise}
\end{cases}
\]

• Hence, instead of computing $\min_w f(w)$ subject to the original constraints, we can compute:

\[
p^* = \min_w \mathcal{P}(w) = \min_w \max_{\alpha: \alpha_i \geq 0} L(w, \alpha)
\]
Dual optimization problem

- Let \(d^* = \max_{\alpha: \alpha_i \geq 0} \min_w L(w, \alpha) \) (max and min are reversed)
- We can show that \(d^* \leq p^* \).
 - Let \(p^* = L(w^p, \alpha^p) \)
 - Let \(d^* = L(w^d, \alpha^d) \)
 - Then \(d^* = L(w^d, \alpha^d) \leq L(w^p, \alpha^d) \leq L(w^p, \alpha^p) = p^* \).
Dual optimization problem

• If \(f, g_i \) are convex and the \(g_i \) can all be satisfied simultaneously for some \(w \), then we have equality: \(d^* = p^* = L(w^*, \alpha^*) \)

• Moreover \(w^*, \alpha^* \) solve the primal and dual if and only if they satisfy the following conditions (called Karush-Kuhn-Tucker):

\[
\frac{\partial}{\partial w_i} L(w^*, \alpha^*) = 0, \quad i = 1 \ldots n \tag{2}
\]

\[
\alpha_i^* g_i(w^*) = 0, \quad i = 1 \ldots k \tag{3}
\]

\[
g_i(w^*) \leq 0, \quad i = 1 \ldots k \tag{4}
\]

\[
\alpha_i^* \geq 0, \quad i = 1 \ldots k \tag{5}
\]
Back to maximum margin perceptron

• We wanted to solve (rewritten slightly):
 \[
 \begin{align*}
 \min_{w, w_0} & \quad \frac{1}{2} \|w\|^2 \\
 \text{w.r.t.} & \quad w, w_0 \\
 \text{s.t.} & \quad 1 - y_i(w \cdot x_i + w_0) \leq 0
 \end{align*}
 \]

• The Lagrangian is:
 \[
 L(w, w_0, \alpha) = \frac{1}{2} \|w\|^2 + \sum_i \alpha_i (1 - y_i(w \cdot x_i + w_0))
 \]

• The primal problem is:
 \[
 \min_{w, w_0} \max_{\alpha: \alpha_i \geq 0} L(w, w_0, \alpha)
 \]

• We will solve the dual problem:
 \[
 \max_{\alpha: \alpha_i \geq 0} \min_{w, w_0} L(w, w_0, \alpha)
 \]

• In this case, the optimal solutions coincide, because we have a quadratic objective and linear constraints (both of which are convex).
Solving the dual

• From KKT (2), the derivatives of $L(w, w_0, \alpha)$ wrt w, w_0 should be 0
• The condition on the derivative wrt w_0 gives $\sum_i \alpha_i y_i = 0$
• The condition on the derivative wrt w gives:

$$w = \sum_i \alpha_i y_i x_i$$

⇒ Just like for the perceptron with zero initial weights, the optimal solution for w is a linear combination of the x_i, and likewise for w_0.

• The output is

$$h_{w, w_0}(x) = \text{sgn} \left(\sum_{i=1}^{m} \alpha_i y_i (x_i \cdot x) + w_0 \right)$$

⇒ Output depends on weighted dot product of input vector with training examples
Solving the dual (II)

• By plugging these back into the expression for L, we get:

$$
\max_{\alpha} \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j (x_i \cdot x_j)
$$

with constraints: $\alpha_i \geq 0$ and $\sum_i \alpha_i y_i = 0$
The support vectors

- Suppose we find optimal αs (e.g., using a standard QP package)
- The α_i will be > 0 only for the points for which $1 - y_i(w \cdot x_i + w_0) = 0$
- These are the points lying on the edge of the margin, and they are called *support vectors*, because they define the decision boundary
- The output of the classifier for query point x is computed as:

$$\text{sgn} \left(\sum_{i=1}^{m} \alpha_i y_i (x_i \cdot x) + w_0 \right)$$

Hence, the output is determined by computing the *dot product of the point with the support vectors*!
Example

Support vectors are in bold
Soft margin classifiers

• Recall that in the linearly separable case, we compute the solution to the following optimization problem:

\[\text{min} \quad \frac{1}{2} \|w\|^2 \]

\[\text{w.r.t.} \quad w, w_0 \]

\[\text{s.t.} \quad y_i (w \cdot x_i + w_0) \geq 1 \]

• If we want to allow misclassifications, we can relax the constraints to:

\[y_i (w \cdot x_i + w_0) \geq 1 - \xi_i \]

• If \(\xi_i \in (0, 1) \), the data point is within the margin

• If \(\xi_i \geq 1 \), then the data point is misclassified

• We define the soft error as \(\sum_i \xi_i \)

• We will have to change the criterion to reflect the soft errors
New problem formulation with soft errors

• Instead of:

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} \| w \|^2 \\
\text{w.r.t.} & \quad w, w_0 \\
\text{s.t.} & \quad y_i (w \cdot x_i + w_0) \geq 1
\end{align*}
\]

we want to solve:

\[
\begin{align*}
\text{min} & \quad \frac{1}{2} \| w \|^2 + C \sum_i \xi_i \\
\text{w.r.t.} & \quad w, w_0, \xi_i \\
\text{s.t.} & \quad y_i (w \cdot x_i + w_0) \geq 1 - \xi_i, \xi_i \geq 0
\end{align*}
\]

• Note that soft errors include points that are misclassified, as well as points within the margin

• There is a linear penalty for both categories

• The choice of the constant C controls overfitting
A built-in overfitting knob

\[
\begin{align*}
\min_{w, w_0, \xi_i} & \quad \frac{1}{2} \|w\|^2 + C \sum_i \xi_i \\
\text{w.r.t.} & \quad w, w_0, \xi_i \\
\text{s.t.} & \quad y_i (w \cdot x_i + w_0) \geq 1 - \xi_i \\
& \quad \xi_i \geq 0
\end{align*}
\]

- If \(C \) is 0, there is no penalty for soft errors, so the focus is on maximizing the margin, even if this means more mistakes.
- If \(C \) is very large, the emphasis on the soft errors will cause decreasing the margin, if this helps to classify more examples correctly.
Lagrangian for the new problem

• Like before, we can write a Lagrangian for the problem and then use the dual formulation to find the optimal parameters:

\[
L(w, w_0, \alpha, \xi, \mu) = \frac{1}{2}||w||^2 + C \sum_i \xi_i + \sum_i \alpha_i (1 - \xi_i - y_i(w_i \cdot x_i + w_0)) + \sum_i \mu_i \xi_i
\]

• All the previously described machinery can be used to solve this problem
• Note that in addition to \(\alpha_i\) we have coefficients \(\mu_i\), which ensure that the errors are positive, but do not participate in the decision boundary
• Next time: an even better way of dealing with non-linearly separable data
Solving the quadratic optimization problem

- Many approaches exist
- Because we have constraints, gradient descent does not apply directly (the optimum might be outside of the feasible region)
- Platt’s algorithm is the fastest current approach, based on coordinate ascent
Coordinate ascent

• Suppose you want to find the maximum of some function $F(\alpha_1, \ldots, \alpha_n)$

• Coordinate ascent optimizes the function by repeatedly picking an α_i and optimizing it, while all other parameters are fixed

• There are different ways of looping through the parameters:
 – Round-robin
 – Repeatedly pick a parameter at random
 – Choose next the variable expected to make the largest improvement
 – ...

Example
Our optimization problem

\[
\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j K(x_i, x_j)
\]

with constraints: \(0 \leq \alpha_i \leq C\) and \(\sum_i \alpha_i y_i = 0\)

- Suppose we want to optimize for \(\alpha_1\) while \(\alpha_2, \ldots, \alpha_n\) are fixed
- We cannot do it because \(\alpha_1\) will be completely determined by the last constraint: \(\alpha_1 = -y_1 \sum_{i=2}^{m} \alpha_i y_i\)
- Instead, we have to optimize \underline{pairs} of \(\alpha_i, \alpha_j\) parameters together
SMO

• Suppose that we want to optimize α_1 and α_2 together, while all other parameters are fixed.
• We know that $y_1\alpha_1 + y_2\alpha_2 = -\sum_{i=1}^{m} y_i \alpha_i = \xi$, where ξ is a constant
• So $\alpha_1 = y_1(\xi - y_2\alpha_2)$ (because y_1 is either $+1$ or -1 so $y_1^2 = 1$)
• This defines a line, and any pair α_1, α_2 which is a solution has to be on the line
• We also know that $0 \leq \alpha_1 \leq C$ and $0 \leq \alpha_2 \leq C'$, so the solution has to be on the line segment inside the rectangle below.

![Diagram showing line segment inside a rectangle with labels α_1, α_2, C, and L]
SMO(III)

• By plugging α_1 back in the optimization criterion, we obtain a quadratic function of α_2, whose optimum we can find exactly.
• If the optimum is inside the rectangle, we take it.
• If not, we pick the closest intersection point of the line and the rectangle.
• This procedure is very fast because all these are simple computations.