
Lecture 9: Large Margin Classifiers. Linear Support
Vector Machines

• Perceptrons
– Definition
– Perceptron learning rule
– Convergence

• Margin & max margin classifiers
• (Linear) support vector machines

– Formulation as optimization problem
– Generalized Lagrangian and dual
– Allowing for noise (soft margins)
– Solving the dual: SMO
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Perceptrons

• Consider a binary classification problem with data {xi, yi}mi=1, yi ∈
{−1,+1}.

• A perceptron is a classifier of the form:

hw,w0(x) = sgn(w · x + w0) =
{

+1 if w · x + w0 ≥ 0
−1 otherwise

Here, w is a vector of weights, “·” denotes the dot product, and w0 is
a constant offset.

• The decision boundary is w · x + w0 = 0.

• Perceptrons output a class, not a probability

• An example 〈x, y〉 is classified correctly iff:

y(w · x + w0) > 0
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A gradient descent-like learning rule

• Consider the following procedure:
1. Initialize w and w0 randomly
2. While any training examples remain incorrecty classified
(a) Loop through all misclassified examples
(b) For misclassified example i, perform the updates:

w← w + γyixi, w0 ← w0 + γyi

where γ is a step-size parameter.
• The update equation, or sometimes the whole procedure, is called

the perceptron learning rule.
• Intuition: Yes, for examples misclassified as negative, increase w ·

xi + w0, for examples misclassified as positive, it decrease it
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Gradient descent interpretation

• The perceptron learning rule can be interpreted as a gradient descent
procedure, but with the following perceptron criterion function

J(w, w0) =
m∑
i=1

{
0 if yi(w · xi + w0) ≥ 0
−yi(w · xi + w0) if yi(w · xi + w0) < 0

• For correctly classified examples, the error is zero.
• For incorrectly classified examples, the error is by how much w ·xi+
w0 is on the wrong side of the decision boundary.
• J is piecewise linear, so it has a gradient almost everywhere; the

gradient gives the perceptron learning rule.
• J is zero iff all examples are classified correctly – just like the 0-1 loss

function.
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Linear separability

• The data set is linearly separable if and only if there exists w, w0 such
that:
– For all i, yi(w · xi + w0) > 0.
– Or equivalently, the 0-1 loss is zero.
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Perceptron convergence theorem

• The perceptron convergence theorem states that if the perceptron
learning rule is applied to a linearly separable data set, a solution will
be found after some finite number of updates.
• The number of updates depends on the data set, and also on the

step size parameter.
• If the data is not linearly separable, there will be oscillation (which

can be detected automatically).
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Perceptron learning example–separable data
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Perceptron learning example–separable data
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Weight as a combination of input vectors

• Recall percepton learning rule:

w← w + γyixi, w0 ← w0 + γyi

• If initial weights are zero, then at any step, the weights are a linear
combination of feature vectors:

w =
m∑
i=1

αixi, w0 =
m∑
i=1

αiyi

where αi is the sum of step sizes used for all updates based on
example i.
• This is called the dual representation of the classifier.
• Even by the end of training, some example may have never

participated in an update.
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Example used (bold) and not used (faint) in updates
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Comment: Solutions are nonunique
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Perceptron summary

• Perceptrons can be learned to fit linearly separable data, using a
gradient descent rule.
• There are other fitting approaches – e.g., formulation as a linear

constraint satisfaction problem / linear program.
• Solutions are non-unique.
• Logistic neurons are often thought of as a “smooth” version of a

perceptron
• For non-linearly separable data:

– Perhaps data can be linearly separated in a different feature
space?

– Perhaps we can relax the criterion of separating all the data?
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Support Vector Machines

• Support vector machines (SVMs) for binary classification can be
viewed as a way of training perceptrons
• There are three main new ideas:

– An alternative optimization criterion (the “margin”), which
eliminates the non-uniqueness of solutions and has theoretical
advantages

– A way of handling nonseparable data by allowing mistakes
– An efficient way of operating in expanded feature spaces – the

“kernel trick”
• SVMs can also be used for multiclass classification and regression.
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Returning to the non-uniqueness issue

• Consider a linearly separable binary classification data set
{xi, yi}mi=1.
• There is an infinite number of hyperplanes that separate the classes:
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• Which plane is best?
• Relatedly, for a given plane, for which points should we be most

confident in the classification?
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The margin, and linear SVMs

• For a given separating hyperplane, the margin is two times the
(Euclidean) distance from the hyperplane to the nearest training
example.
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• It is the width of the “strip” around the decision boundary containing
no training examples.
• A linear SVM is a perceptron for which we choose w, w0 so that

margin is maximized
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Distance to the decision boundary

• Suppose we have a decision boundary that separates the data.

wA

!

B

(i)

• Let γi be the distance from instance xi to the decision boundary.
• How can we write γi in term of xi, yi,w, w0?
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Distance to the decision boundary (II)
• The vector w is normal to the decision boundary. Thus, w

||w|| is the
unit normal.
• The vector from the B to A is γi w

||w||.

• B, the point on the decision boundary nearest xi, is xi − γi w
||w||.

• As B is on the decision boundary,

w ·
(
xi − γi

w
||w||

)
+ w0 = 0

• Solving for γi yields, for a positive example:

γi =
w
||w||

· xi +
w0

||w||
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The margin

• The margin of the hyperplane is 2M , where M = mini γi
• The most direct statement of the problem of finding a maximum

margin separating hyperplane is thus

max
w,w0

min
i
γi

≡ max
w,w0

min
i
yi

(
w
||w||

· xi +
w0

||w||

)
• This turns out to be inconvenient for optimization, however. . .
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Treating the γi as constraints

• From the definition of margin, we have:

M ≤ γi = yi

(
w
‖w||

· xi +
w0

‖w‖

)
∀i

• This suggests:
maximize M

with respect to w, w0

subject to yi

(
w
‖w‖ · xi +

w0
‖w‖

)
≥M for all i
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Treating the γi as constraints

• From the definition of margin, we have:

M ≤ γi = yi

(
w
‖w||

· xi +
w0

‖w‖

)
∀i

• This suggests:
maximize M

with respect to w, w0

subject to yi

(
w
‖w‖ · xi +

w0
‖w‖

)
≥M for all i

• Problems:
– w appears nonlinearly in the constraints.
– This problem is underconstrained. If (w, w0,M) is an optimal

solution, then so is (βw, βw0,M) for any β > 0.
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Adding a constraint

• Let’s try adding the constraint that ‖w‖M = 1.
• This allows us to rewrite the objective function and constraints as:

min ‖w‖
w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1
• This is really nice because the constraints are linear.
• The objective function ‖w‖ is still a bit awkward.
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Final formulation

• Let’s maximize ‖w‖2 instead of ‖w‖.
(Taking the square is a monotone transformation, as ‖w‖ is postive,
so this doesn’t change the optimal solution.)
• This gets us to:

min ‖w‖2
w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1
• This we can solve! How?
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Final formulation

• Let’s maximize ‖w‖2 instead of ‖w‖.
(Taking the square is a monotone transformation, as ‖w‖ is postive,
so this doesn’t change the optimal solution.)
• This gets us to:

min ‖w‖2
w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1
• This we can solve! How?

– It is a quadratic programming (QP) problem—a standard type
of optimization problem for which many efficient packages are
available.

– Better yet, it’s a convex (positive semidefinite) QP
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Example
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We have a solution, but no support vectors yet...
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Lagrange multipliers for inequality constraints
(revisited)

• Suppose we have the following optimization problem, called primal:

min
w
f(w)

such that gi(w) ≤ 0, i = 1 . . . k

• We define the generalized Lagrangian:

L(w, α) = f(w) +
k∑
i=1

αigi(w), (1)

where αi, i = 1 . . . k are the Lagrange multipliers.
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A different optimization problem

• Consider P(w) = maxα:αi≥0L(w, α)
• Observe that the follow is true. Why?

P(w) =
{
f(w) if all constraints are satisfied
+∞ otherwise

• Hence, instead of computing minw f(w) subject to the original
constraints, we can compute:

p∗ = min
w
P(w) = min

w
max
α:αi≥0

L(w, α)
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Dual optimization problem

• Let d∗ = maxα:αi≥0 minwL(w, α) (max and min are reversed)
• We can show that d∗ ≤ p∗.

– Let p∗ = L(wp, αp)
– Let d∗ = L(wd, αd)
– Then d∗ = L(wd, αd) ≤ L(wp, αd) ≤ L(wp, αp) = p∗.)
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Dual optimization problem

• If f , gi are convex and the gi can all be satisfied simultaneously for
some w, then we have equality: d∗ = p∗ = L(w∗, α∗)
• Moreover w∗, α∗ solve the primal and dual if and only if they satisfy

the following conditions (called Karush-Kunh-Tucker):

∂

∂wi
L(w∗, α∗) = 0, i = 1 . . . n (2)

α∗i gi(w
∗) = 0, i = 1 . . . k (3)

gi(w∗) ≤ 0, i = 1 . . . k (4)

α∗i ≥ 0, i = 1 . . . k (5)
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Back to maximum margin perceptron

• We wanted to solve (rewritten slightly):
min 1

2‖w‖
2

w.r.t. w, w0

s.t. 1− yi(w · xi + w0) ≤ 0
• The Lagrangian is:

L(w, w0, α) =
1
2
‖w‖2 +

∑
i

αi(1− yi(w · xi + w0))

• The primal problem is: minw,w0 maxα:αi≥0L(w, w0, α)
• We will solve the dual problem: maxα:αi≥0 minw,w0 L(w, w0, α)
• In this case, the optimal solutions coincide, because we have a

quadratic objective and linear constraints (both of which are convex).
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Solving the dual

• From KKT (2), the derivatives of L(w, w0, α) wrt w, w0 should be 0

• The condition on the derivative wrt w0 gives
∑
iαiyi = 0

• The condition on the derivative wrt w gives:

w =
∑
i

αiyixi

⇒ Just like for the perceptron with zero initial weights, the optimal
solution for w is a linear combination of the xi, and likewise for w0.

• The output is
hw,w0(x) = sgn

(
m∑
i=1

αiyi(xi · x) + w0

)

⇒ Output depends on weighted dot product of input vector with training
examples

COMP-652, Lecture 9 - October 7, 2009 30



Solving the dual (II)

• By plugging these back into the expression for L, we get:

max
α

∑
i

αi −
1
2

∑
i,j

yiyjαiαj(xi · xj)

with constraints: αi ≥ 0 and
∑
iαiyi = 0
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The support vectors

• Suppose we find optimal αs (e.g., using a standard QP package)
• The αi will be > 0 only for the points for which 1− yi(w · xi +w0) = 0
• These are the points lying on the edge of the margin, and they are

called support vectors, because they define the decision boundary
• The output of the classifier for query point x is computed as:

sgn

(
m∑
i=1

αiyi(xi · x) + w0

)

Hence, the output is determined by computing the dot product of the
point with the support vectors!
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Example

Support vectors are in bold
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Soft margin classifiers

• Recall that in the linearly separable case, we compute the solution to
the following optimization problem:

min 1
2‖w‖

2

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1
• If we want to allow misclassifications, we can relax the constraints to:

yi(w · xi + w0) ≥ 1− ξi

• If ξi ∈ (0, 1), the data point is within the margin
• If ξi ≥ 1, then the data point is misclassified
• We define the soft error as

∑
i ξi

• We will have to change the criterion to reflect the soft errors
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New problem formulation with soft errors

• Instead of:
min 1

2‖w‖
2

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1
we want to solve:

min 1
2‖w‖

2 + C
∑
i ξi

w.r.t. w, w0, ξi
s.t. yi(w · xi + w0) ≥ 1− ξi, ξi ≥ 0

• Note that soft errors include points that are misclassified, as well as
points within the margin
• There is a linear penalty for both categories
• The choice of the constant C controls overfitting
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A built-in overfitting knob

min 1
2‖w‖

2 + C
∑
i ξi

w.r.t. w, w0, ξi
s.t. yi(w · xi + w0) ≥ 1− ξi

ξi ≥ 0

• If C is 0, there is no penalty for soft errors, so the focus is on
maximizing the margin, even if this means more mistakes
• If C is very large, the emphasis on the soft errors will cause

decreasing the margin, if this helps to classify more examples
correctly.
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Lagrangian for the new problem

• Like before, we can write a Lagrangian for the problem and then use
the dual formulation to find the optimal parameters:

L(w, w0, α, ξ, µ) =
1
2
||w||2 + C

∑
i

ξi

+
∑
i

αi (1− ξi − yi(wi · xi + w0)) +
∑
i

µiξi

• All the previously described machinery can be used to solve this
problem
• Note that in addition to αi we have coefficients µi, which ensure that

the errors are positive, but do not participate in the decision boundary
• Next time: an even better way of dealing with non-linearly separable

data
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Solving the quadratic optimization problem

• Many approaches exist
• Because we have constraints, gradient descent does not apply

directly (the optimum might be outside of the feasible region)
• Platt’s algorithm is the fastest current approach, based on

coordinate ascent
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Coordinate ascent

• Suppose you want to find the maximum of some function
F (α1, . . . αn)
• Coordinate ascent optimizes the function by repeatedly picking an αi

and optimizing it, while all other parameters are fixed
• There are different ways of looping through the parameters:

– Round-robin
– Repeatedly pick a parameter at random
– Choose next the variable expected to make the largest

improvement
– ...
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Example
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Our optimization problem

max
α

∑
i

αi −
1
2

∑
i,j

yiyjαiαjK(xi,xj)

with constraints: 0 ≤ αi ≤ C and
∑
iαiyi = 0

• Suppose we want to optimize for α1 while α2, . . . αn are fixed
• We cannot do it because α1 will be completely determined by the last

constraint: α1 = −y1
∑m
i=2αiyi

• Instead, we have to optimize pairs of αi, αj parameters together
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SMO

• Suppose that we want to optimize α1 and α2 together, while all other
parameters are fixed.
• We know that y1α1 + y2α2 = −

∑m
i=1 yiαi = ξ, where ξ is a constant

• So α1 = y1(ξ − y2α2) (because y1 is either +1 or −1 so y2
1 = 1)

• This defines a line, and any pair α1, α2 which is a solution has to be
on the line
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SMO (II)

• We also know that 0 ≤ α1 ≤ C and 0 ≤ α2 ≤ C, so the solution has
to be on the line segment inside the rectangle below
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SMO(III)

• By plugging α1 back in the optimization criterion, we obtain a
quadratic function of α2, whose optimum we can find exactly
• If the optimum is inside the rectangle, we take it.
• If not, we pick the closest intersection point of the line and the

rectangle
• This procedure is very fast because all these are simple

computations.
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