
Lecture 6: Instance-Based Learning

• Nearest-neighbor methods
• Kernel regression
• Locally weighted regression
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Recall: Parametric supervised learning

• So far, we have assumed that we have a data set D of labeled
examples
• From this, we learn a parameter vector or such that some error

measure based on the training data is minimized
• These methods are called parametric, and their main goal is to

summarize the data using the parameters
• Parametric methods are typically global, i.e. have one set of

parameters for the entire data space
• But what if we just remembered the data?
• When new instances arrive, we will compare them with what we

know, and determine the answer
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Non-parametric (memory-based) learning methods

• Key idea: just store all training examples 〈xi, yi〉
• When a query is made, compute the value of the new instance based

on the values of the closest (most similar) points
• Requirements:

– A distance function
– How many closest points (neighbors) to look at?
– How do we compute the value of the new point based on the

existing values?
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Simple idea: Connect the dots!
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Simple idea: Connect the dots!

10 12 14 16 18 20 22 24 26 28
0

10

20

30

40

50

60

70

80

nucleus size

tim
e 

to
 re

cu
rre

nc
e

10 12 14 16 18 20 22 24 26 28
0

10

20

30

40

50

60

70

80

nucleus size

tim
e 

to
 re

cu
rre

nc
e

Wisconsin data set, regression
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One-nearest neighbor

• Given: Training data {(xi,yi)}mi=1, distance metric d on X .
• Learning: Nothing to do! (just store data)
• Prediction: for x ∈ X

– Find nearest training sample to x.

i ∈ arg min
i
d(xi,x)

– Predict y = yi.
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What does the approximator look like?

• Nearest-neighbor does not explicitly compute decision boundaries
• But the effective decision boundaries are a subset of the Voronoi

diagram for the training data

Each line segment is equidistant between two points of opposite classes.
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What kind of distance metric?

• Euclidian distance
• Maximum/minimum difference along any axis
• Weighted Euclidian distance (with weights based on domain

knowledge) ∑
i

wi(xq,i − xt,i)2

• An arbitrary distance or similarity function d, specific for the
application at hand (works best, if you have one)
• Most often the distance function is fixed (more on how to learn this

later)
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Distance metric is really important!
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Left: both attributes weighted equally; Right: second attributes weighted more

You may need to do preprocessing:

• Scale the input dimensions (or normalize them)
• Remove noisy inputs
• Determine weights based on cross-validation (or information-

theoretic methods)
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k-nearest neighbor

• Given: Training data {(xi,yi)}mi=1, distance metric d on X .
• Learning: Nothing to do!
• Prediction: for x ∈ X

– Find the k nearest training samples to x.
Let their indeces be i1, i2, . . . , ik.

– Predict
∗ y = mean/median of {yi1,yi2, . . . ,yik} for regression
∗ y = majority of {yi1,yi2, . . . ,yik} for classification, or empirical

probability of each class
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Classification, 2-nearest neighbor, empirical
distribution
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Classification, 3-nearest neighbor
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Classification, 5-nearest neighbor
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Classification, 10-nearest neighbor
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Classification, 15-nearest neighbor
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Classification, 20-nearest neighbor
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Regression, 2-nearest neighbor, mean prediction
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Regression, 3-nearest neighbor
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Regression, 5-nearest neighbor
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Regression, 10-nearest neighbor
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Bias-variance trade-off

• If k is low, very non-linear functions can be approximated, but we also
capture the noise in the data
Bias is low, variance is high
• If k is high, the output is much smoother, less sensitive to data

variation
High bias, low variance
• A validation set can be used to pick the best k
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Choosing k
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• Pick the best value according to the error on the validation set
• Makes the training more expensive, but results are typically much

better
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Improving query efficiency

• If the data set is large, searching through all points to compute the
set of nearest neighbors is very slow
• Possible solutions:

– Condensation of the data set
– Hash tables in which the hashing function is based on the distance

metric
– kd-trees
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Condensation: Main idea

• Only the points that support the decision boundary are needed to
compute the classification
• Unfortunately, finding the minimal set of such points is NP complete.
• Heuristic; go through the data set, if a point is classified correctly do

nothing, otherwise add it to the “condensed” set
• More generally: dictionary methods try to determine a subset of data

that is worth keeping
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kd-trees
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• Split the examples using the median value of the feature with the
highest variance
• Points corresponding to the splitting value are stored in the internal

nodes
• We can control the depth of the tree (stop splitting)
• In this case, we will have a pool of points at the leaves, and we still

need to go through all of them
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kd-tree search

• Go down the appropriate branches until we find a match - this gives
a candidate best distance
• At every node along the path, check if a better distance could have

been obtained on a different branch
Compute intersection of a hypersphere of the candidate distance,
centered at the point, with the hyperplane at that node.
• If a better solution is possible, recurse down other branches
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Features of kd-trees

• Makes it easy to do 1-nearest neighbor
• To compute weighted nearest-neighbor efficiently, we can leave out

some neighbors, if their influence on the prediction will be small
• But the tree needs to be restructured periodically if we acquire more

data, to keep it balanced
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Problems with k-nearest neighbor

• A lot of discontinuities!
• Sensitive to small variations in the input data

Can we fix this but still keep it (fairly) local?
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Distance-weighted (kernel-based) nearest neighbor

• Inputs: Training data {(xi,yi)}mi=1, distance metric d on X , weighting
function w : < 7→ <.
• Learning: Nothing to do!
• Prediction: On input x,

– For each i compute wi = w(d(xi,x)).
– Predict weighted majority or mean. For example,

y =
∑
iwiyi∑
iwi

How to weight distances?
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Some weighting functions

1
d(xi,x)

1
d(xi,x)2

1
c+ d(xi,x)2

e
−d(xi,x)2

σ2

COMP-652, Lecture 6 - September 23, 2009 30



Example: Gaussian weighting, small σ
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Gaussian weighting, medium σ
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Gaussian weighting, large σ
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All examples get to vote! Curve is smoother, but perhaps too smooth.
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Locally-weighted linear regression

• Weighted linear regression: different weights in the error function for
different points (see homework 1)
• Locally weighted linear regression: weights depend on the distance

to the query point
• Compared to kernel-based regression: use a linear fit rather than just

an average
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Another view of LWR

Image from  Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996) "Active Learning with Statistical Models", JAIR Volume 4, pages 129-145.
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Lazy and eager learning

• Lazy: wait for query before generalizing
E.g. Nearest Neighbor
• Eager: generalize before seeing query

E.g. Backpropagation, Linear regression,

Does it matter?
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Pros and cons of lazy and eager learning

• Eager learner must create global approximation
• Lazy learner can create many local approximations
• If they use same hypothesis space H, a lazy learner can represent

more complex functions (e.g., consider H = linear functions)
• Eager learner does the work off-line, summarizes lots of data with

few parameters
• Lazy learner has to do lots of work sifting through the data at query

time
• Typically lazy learners take longer time to answer queries and require

more space
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When to consider instance-based learning

• Instances map to points in Rn

• Not too many attributes per instace (< 20)
• Advantages:

– Training is very fast
– Easy to learn complex functions over few variables
– Can give back confidence intervals in addition to the prediction
– Variable resolution (depends on the data)
– Does not lose any information

• Disadvantages:
– Slow at query time
– Easily fooled by irrelevant attributes
– Cannot be used directly for problems with lots of inputs
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