Lecture 6: Instance-Based Learning

e Nearest-neighbor methods
e Kernel regression
e Locally weighted regression
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Recall: Parametric supervised learning

e So far, we have assumed that we have a data set D of labeled
examples

e From this, we learn a parameter vector or such that some error
measure based on the training data is minimized

e These methods are called parametric, and their main goal is to
summarize the data using the parameters

e Parametric methods are typically global, i.e. have one set of
parameters for the entire data space

e But what if we just remembered the data?

e When new instances arrive, we will compare them with what we
know, and determine the answer
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Non-parametric (memory-based) learning methods

e Key idea: just store all training examples (x;, y;)

e When a query is made, compute the value of the new instance based
on the values of the closest (most similar) points

e Requirements:

— A distance function
— How many closest points (neighbors) to look at?
— How do we compute the value of the new point based on the

existing values?
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Simple idea: Connect the dots!

nearest neighbor
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Wisconsin data set, classification
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Simple idea: Connect the dots!
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One-nearest neighbor

e Given: Training data {(x;,y;)}>,, distance metric d on X.
e Learning: Nothing to do! (just store data)
e Prediction: forx € X

— Find nearest training sample to x.

i € argmin d(x;, X)
1

— Predicty = y,;.
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What does the approximator look like?

e Nearest-neighbor does not explicitly compute decision boundaries

e But the effective decision boundaries are a subset of the Voronoi
diagram for the training data

Each line segment is equidistant between two points of opposite classes.
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What kind of distance metric?

e Euclidian distance
e Maximum/minimum difference along any axis
e Weighted Euclidian distance (with weights based on domain

knowledge)
Z wi(ill‘q,z' — ilft,z')2

e An arbitrary distance or similarity function d, specific for the
application at hand (works best, if you have one)

e Most often the distance function is fixed (more on how to learn this
later)
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Distance metric is really important!

- . -

Left: both attributes weighted equally; Right: second attributes weighted more
You may need to do preprocessing:
e Scale the input dimensions (or normalize them)

e Remove noisy inputs

e Determine weights based on cross-validation (or information-
theoretic methods)
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k-nearest neighbor

e Given: Training data {(x;,y;)}!",, distance metric d on X.
e Learning: Nothing to do!
e Prediction: forx € X

— Find the k nearest training samples to x.

Let their indeces be i1, 19, ..., 1.
— Predict
*+ y = mean/median of {y;,,yi,, ...,y } for regression

+ y = majority of {y;,,yi,, ...,y } for classification, or empirical
probability of each class
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Classification, 2-nearest neighbor, empirical
distribution

2-nearest neighbor, mean
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Classification, 3-nearest neighbor

3-nearest neighbor, mean
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Classification, 5-nearest neighbor

5-nearest neighbor, mean
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Classification, 10-nearest neighbor

10-nearest neighbor, mean
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Classification, 15-nearest neighbor

15—-nearest neighbor, mean
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Classification, 20-nearest neighbor

20-nearest neighbor, mean
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Regression, 2-nearest neighbor, mean prediction
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Regression, 3-nearest neighbor
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Regression, 5-nearest neighbor
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Regression, 10-nearest neighbor
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Bias-variance trade-off

e If kis low, very non-linear functions can be approximated, but we also
capture the noise in the data
Bias is low, variance is high

e If £ is high, the output is much smoother, less sensitive to data

variation
High bias, low variance

e A validation set can be used to pick the best &
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Choosing &
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e Pick the best value according to the error on the validation set

e Makes the training more expensive, but results are typically much
better
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Improving query efficiency

e If the data set is large, searching through all points to compute the
set of nearest neighbors is very slow
e Possible solutions:

— Condensation of the data set
— Hash tables in which the hashing function is based on the distance

metric
— kd-trees
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Condensation: Main idea

e Only the points that support the decision boundary are needed to
compute the classification

e Unfortunately, finding the minimal set of such points is NP complete.

e Heuristic; go through the data set, if a point is classified correctly do
nothing, otherwise add it to the “condensed” set

e More generally: dictionary methods try to determine a subset of data
that is worth keeping
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kd-trees

e Split the examples using the median value of the feature with the

highest variance

e Points corresponding to the splitting value are stored in the internal

nodes

e We can control the depth of the tree (stop splitting)
¢ In this case, we will have a pool of points at the leaves, and we still
need to go through all of them
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kd-tree search

e Go down the appropriate branches until we find a match - this gives
a candidate best distance

e At every node along the path, check if a better distance could have
been obtained on a different branch
Compute intersection of a hypersphere of the candidate distance,
centered at the point, with the hyperplane at that node.

e If a better solution is possible, recurse down other branches
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Features of kd-trees

e Makes it easy to do 1-nearest neighbor

e To compute weighted nearest-neighbor efficiently, we can leave out
some neighbors, if their influence on the prediction will be small

e But the tree needs to be restructured periodically if we acquire more
data, to keep it balanced
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Problems with £-nearest neighbor

e A lot of discontinuities!
e Sensitive to small variations in the input data

Can we fix this but still keep it (fairly) local?
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Distance-weighted (kernel-based) nearest neighbor

e Inputs: Training data {(x;,y;)}*,, distance metric d on X', weighting

function w : & — K.
e Learning: Nothing to do!
e Prediction: On input x,
— For each i compute w; = w(d(x;,x)).
— Predict weighted majority or mean. For example,
Zi WiYi
Y D Wi

How to weight distances?
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Some weighting functions

d(X’iv X) d(xia X)2 C+ d(Xi7 X)2
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Example: Gaussian weighting, small o

Gaussian—-weighted nearest neighbor with 6=0.25
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Gaussian weighting, medium

Gaussian-weighted nearest neighbor with 0=2
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Gaussian weighting, large ¢

Gaussian-weighted nearest neighbor with 0=5
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All examples get to vote! Curve is smoother, but perhaps too smooth.
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Locally-weighted linear regression

e Weighted linear regression: different weights in the error function for
different points (see homework 1)

e Locally weighted linear regression: weights depend on the distance
to the query point

e Compared to kernel-based regression: use a linear fit rather than just
an average
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Lazy and eager learning

e Lazy. wait for query before generalizing
E.g. Nearest Neighbor

e Eager. generalize before seeing query
E.g. Backpropagation, Linear regression,

Does it matter?
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Pros and cons of lazy and eager learning

e Eager learner must create global approximation
e Lazy learner can create many local approximations

e If they use same hypothesis space H, a lazy learner can represent
more complex functions (e.g., consider H = linear functions)

e Eager learner does the work off-line, summarizes lots of data with
few parameters

e Lazy learner has to do lots of work sifting through the data at query
time

e Typically lazy learners take longer time to answer queries and require
more space

COMP-652, Lecture 6 - September 23, 2009 36



When to consider instance-based learning

e Instances map to points in R™
e Not too many attributes per instace (< 20)
e Advantages:

— Training is very fast

— Easy to learn complex functions over few variables

— Can give back confidence intervals in addition to the prediction
— Variable resolution (depends on the data)

— Does not lose any information

e Disadvantages:

— Slow at query time
— Easily fooled by irrelevant attributes
— Cannot be used directly for problems with lots of inputs

COMP-652, Lecture 6 - September 23, 2009

37



