
Lecture 5: Logistic Regression. Neural Networks

• Logistic regression
• Comparison with generative models
• Feed-forward neural networks
• Backpropagation
• Tricks for training neural networks

COMP-652, Lecture 5 - September 21, 2009 1

Recall: Binary classification

• We are given a set of data 〈xi, yi〉 with yi ∈ {0, 1}.
• The probability of a given input x to have class y = 1 can be

computed as:

P (y = 1|x) =
P (x, y = 1)

P (x)
=

1
1 + exp(−a)

= σ(a)

where
a = ln

P (x|y = 1)P (y = 1)
P (x|y = 0)P (y = 0)

• σ is the sigmoid function (also called “squashing”) function
• a is the log-odds of the data being class 1 vs. class 0

COMP-652, Lecture 5 - September 21, 2009 2

Recall: Modelling for binary classification

P (y = 1|x) = σ

(
ln
P (x|y = 1)P (y = 1)
P (x|y = 0)P (y = 0)

)

• One approach is to model P (y) and P (x|y), then use the approach
above for classification (naive Bayes, Gaussian discriminants)
• This is called generative learning, because we can actually use the

model to generate (i.e. fantasize) data
• Another idea is to model directly P (y|x)
• This is called discriminative learning, because we only care about

discriminating (i.e. separating) examples of the two classes.
• We focus on this approach today

COMP-652, Lecture 5 - September 21, 2009 3

Error function

• Maximum likelihood classification assumes that we will find the
hypothesis that maximizes the (log) likelihood of the training data:

arg max
h

logP (〈xi, yi〉i=1...m|h) = arg max
h

n∑
i=1

logP (xi, , yi)|h)

(using the usual i.i.d. assumption)
• But if we use discriminative learning, we have no model of the input

distribution
• Instead, we want to maximize the conditional probability of the labels,

given the inputs:

arg max
h

m∑
i=1

logP (yi|xi, h)

COMP-652, Lecture 5 - September 21, 2009 4

The cross-entropy error function

• Suppose we interpret the output of the hypothesis, h(xi), as the
probability that yi = 1
• Then the log-likelihood of a hypothesis h is:

logL(h) =
m∑
i=1

logP (yi|xi, h) =
m∑
i=1

{
log h(xi) if yi = 1
log(1− h(xi)) if yi = 0

=
m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

• The cross-entropy error function is the opposite quantity:

J(h) = −

(
m∑
i=1

yi log h(xi) + (1− yi) log(1− h(xi))

)

COMP-652, Lecture 5 - September 21, 2009 5

Logistic regression

• Suppose we represent the hypothesis itself as a logistic function of a
linear combination of inputs:

h(x =
1

1 + exp(wTx)

This is also known as a sigmoid neuron
• Suppose we interpret h(x) as P (y = 1|x)
• Then the log-odds ratio,

ln
(
P (y = 1|x)
P (y = 0|x)

)
= wTx

which is linear (nice!)
• We can find the optimum weight by minimizing cross-entropy

(maximizing the conditional likelihood of the data)

COMP-652, Lecture 5 - September 21, 2009 6

Cross-entropy error surface for logistic function

J(h) = −

(
m∑
i=1

yi log σ(wTxi) + (1− yi) log(1− σ(wTxi))

)

Nice error surface, unique minimum, but cannot solve in closed form

COMP-652, Lecture 5 - September 21, 2009 7

Maximization procedure: Gradient ascent

• First we compute the gradient of logL(w) wrt w:

∇ logL(w)=
∑
i

yi
1

hw(xi)
hw(xi)(1− hw(xi))xi

+(1− yi)
1

1− hw(xi)
hw(xi)(1− hw(xi))xi(−1)

=
∑
i

xi(yi − yihw(xi)− hw(xi) + yihw(xi)) =
∑
i

(yi − hw(xi))xi

• The update rule (because we maximize) is:

w← w + α∇ logL(w) = w + α

m∑
i=1

(yi − hw(xi))xi

where α ∈ (0, 1) is a step-size or learning rate parameter
• This is called logistic regression

COMP-652, Lecture 5 - September 21, 2009 8

Another algorithm for optimization

• Recall Newton’s method for finding the zero of a function g : R→ R
• At point wi, approximate the function by a straight line (its tangent)
• Solve the linear equation for where the tangent equals 0, and move

the parameter to this point:

wi+1 = wi − g(wi)
g′(wi)

COMP-652, Lecture 5 - September 21, 2009 9

Application to machine learning

• Suppose for simplicity that the error function J has only one
parameter
• We want to optimize J , so we can apply Newton’s method to find the

zeros of J ′ = d
dwJ

• We obtain the iteration:

wi+1 = wi − J ′(wi)
J ′′(wi)

• Note that there is no step size parameter!
• This is a second-order method, because it requires computing the

second derivative
• But, if our error function is quadratic, this will find the global optimum

in one step!

COMP-652, Lecture 5 - September 21, 2009 10

Second-order methods: Multivariate setting

• If we have an error function J that depends on many variables, we
can compute the Hessian matrix, which contains the second-order
derivatives of J :

Hij =
∂2J

∂wi∂wj

• The inverse of the Hessian gives the “optimal” learning rates
• The weights are updated as:

w← w −H−1∇wJ

• This is also called Newton-Raphson method

COMP-652, Lecture 5 - September 21, 2009 11

Which method is better?

• Newton’s method usually requires significantly fewer iterations than
gradient descent
• Computing the Hessian requires a batch of data, so there is no

natural on-line algorithm
• Inverting the Hessian explicitly is expensive, but almost never

necessary
• Computing the product of a Hessian with a vector can be done in

linear time (Schraudolph, 1994)

COMP-652, Lecture 5 - September 21, 2009 12

Newton-Raphson for logistic regression

• Leads to a nice algorithm called recursive least squares
• The Hessian has the form:

H = ΦTRΦ

where R is the diagonal matrix of h(xi)(1− h(xi))
• The weight update becomes:

w← (ΦTRΦ)−1ΦTR(Φw −R−1(Φw − y)

COMP-652, Lecture 5 - September 21, 2009 13

Logistic vs. Gaussian Discriminant

• Comprehensive study done by Ng and Jordan (2002)
• If the Gaussian assumption is correct, as expected, Gaussian

discriminant is better
• If the assumption is violated, Gaussian discriminant suffers from bias

(unlike logistic regression)
• In practice, Gaussian discriminant, tends to converge quicker to a

less helpful solution
• Note that they optimize different error function!

COMP-652, Lecture 5 - September 21, 2009 14

From neurons to networks

• Logistic regression can be used to learn linearly separable problems

x1

x2
+

+

-
-

+
-

x1

x2

(a) (b)

-

+ -

+

• If the instances are not linearly separable, the function cannot be
learned correctly (e.g. XOR)
• One solution is to provide fixed, non-linear basis functions instead of

inputs (like we did with linear regression)
• Today: learn such non-linear functions from data

COMP-652, Lecture 5 - September 21, 2009 15

Example: Logical functions of two variables

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
Sq

ua
re

 E
rro

r

 Number of Epochs

Sigmoid Unit for And Function

’mse-curve-0.1’
’mse-curve-0.01’

’mse-curve-0.5’

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2000 4000 6000 8000 10000

Sq
ua

re
d

Er
ro

r

Number of epochs

’xor-no-hidden’

• One sigmoid neuron can learn the AND function (left) but not the
XOR function (right)
• In order to learn discrimination in data sets that are not linearly

separable, we need networks of sigmoid units

COMP-652, Lecture 5 - September 21, 2009 16

Example: A network representing the XOR function

5

1

2

3
w31

w32

w41

w42

w51

w52

w40

0

w50

w30

4

Input 1

Input 2

Ouput 1

(-10.34)

(-6.8)

(4.36)

(4.5)

(6.91)

(10.28)

(-3.06)
(6.92)

(-4.86)

1

 0 1

 1 0

 1 1

0.04 0.001 0 0

0.080.98

Input1 Input2 o3 o4 Ouput 1
0.011

0.99

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000 2500 3000
Sq

ua
re

d
Er

ro
r

Number of Epochs

Learning Curve for XOR Function with 2-2-1 Architecture

’mse-curve’

COMP-652, Lecture 5 - September 21, 2009 17

Feed-forward neural networks
i

j

Oi=Xji

WjiInput Layer

Hidden Layer

Output Layer

Input 1

Input n

1

1

.

.

. .
.
.

1

1

• A collection of units (neurons) with sigmoid or sigmoid-like
activations, arranged in layers
• Layers 0 is the input layer, and its units just copy the inputs (by

convention)
• The last layer, K, is called output layer, since its units provide the

result of the network
• Layers 1, . . .K − 1 are usually called hidden layers (their presence

cannot be detected from outside the network)

COMP-652, Lecture 5 - September 21, 2009 18

Why this name?

• In feed-forward networks the outputs of units in layer k become inputs
for units in layers with index > k

• There are no cross-connections between units in the same layer
• There are no backward (“recurrent”) connections from layers

downstream
• Typically, units in layer k provide input only to units in layer k + 1
• In fully connected networks, all units in layer k are connected to all

units in layer k + 1

COMP-652, Lecture 5 - September 21, 2009 19

Notation

i

j

Oi=Xji

WjiInput Layer

Hidden Layer

Output Layer

Input 1

Input n

1

1

.

.

. .
.
.

1

1

• wj,i is the weight on the connection from unit i to unit j
• By convention, xj,0 = 1,∀j
• The output of unit j, denoted oj, is computed using a sigmoid:
oj = σ(wT

j xj) where wj is the vector of weights on the connections
entering unit j and xj is the vector of inputs to unit j
• By the definition of the connections, xj,i = oi

COMP-652, Lecture 5 - September 21, 2009 20

Computing the output of the network

• Suppose that we want the network to make a prediction for instance
〈x, y〉
• In a feed-forward network, this can be done in one forward pass:

For layer k = 1 to K
1. Compute the output of all neurons in layer k:

oj ← σ(wT
j xj),∀j ∈ Layer k

2. Copy these outputs as inputs to the next layer:

xj,i ← oi,∀i ∈ Layer k, ∀j ∈ Layer k + 1

COMP-652, Lecture 5 - September 21, 2009 21

Expressiveness of feed-forward neural networks

• A single sigmoid neuron has the same representational power as a
perceptron: Boolean AND, OR, NOT, but not XOR
• Every Boolean function can be represented by a network with a

single hidden layer, but might require a number of hidden units that
is exponential in the number of inputs
• Every bounded continuous function can be approximated with

arbitrary precision by a network with one, sufficiently large hidden
layer [Cybenko 1989; Hornik et al. 1989]
• Any function can be approximated to arbitrary accuracy by a network

with two hidden layers [Cybenko 1988].

COMP-652, Lecture 5 - September 21, 2009 22

Learning in feed-forward neural networks

• Usually, the network structure (units and interconnections) is
specified by the designer
• The learning problem is finding a good set of weights
• The answer: gradient descent, because the form of the hypothesis

formed by the network, hw, is
– Differentiable! Because of the choice of sigmoid units
– Very complex! Hence, direct computation of the optimal weights is

not possible

COMP-652, Lecture 5 - September 21, 2009 23

Backpropagation algorithm

• Just gradient descent over all weights in the network!
• We put together the two phases described above:

1. Forward pass: Compute the outputs of all units in the network,
ok, k = N +1, . . . N +H +1, going in increasing order of the layers

2. Backward pass: Compute the δk updates described before, going
from k = N +H + 1 down to k = N + 1 (in decreasing order of the
layers)

3. Update to all the weights in the network:

wi,j ← wi,j + αi,jδixi,j

For computing probabilities, drop the o(1− o) terms from the δ

COMP-652, Lecture 5 - September 21, 2009 24

Backpropagation algorithm

1. Initialize all weights to small random numbers.
2. Repeat until satisfied:

(a) Pick a training example
(b) Input example to the network and compute the outputs ok
(c) For each output unit k, δk ← ok(1− ok)(yk − ok)
(d) For each hidden unit l

δl ← ol(1− ol)
∑

k∈outputs

wlkδk

(e) Update each network weight: wij ← wij + αijδjxij
• xij is the input from unit i into unit j (for the output neurons,

these are signals received from the hidden layer neurons)
• αij is the learning rate or step size

COMP-652, Lecture 5 - September 21, 2009 25

Backpropagation variations

• The previous version corresponds to incremental (stochastic)
gradient descent
• An analogous batch version can be used as well:

– Loop through the training data, accumulating weight changes
– Update weights

• One pass through the data set is called epoch
• Algorithm can be easily generalized to predict probabilities, instead

of minimizing sum-squared error
• Generalization is easy for other network structures as well.

COMP-652, Lecture 5 - September 21, 2009 26

Convergence of backpropagation

• Backpropagation performs gradient descent over all the parameters
in the network
• Hence, if the learning rate is appropriate, the algorithm is guaranteed

to converge to a local minimum of the cost function
– NOT the global minimum
– Can be much worse than global minimum
– There can be MANY local minima (Auer et al, 1997)

• Partial solution: restarting = train multiple nets with different initial
weights.
• In practice, quite often the solution found is very good

COMP-652, Lecture 5 - September 21, 2009 27

Adding momentum
On the t-th training sample, instead of the update:

∆wij ← αijδjxij

we do:
∆wij(t)← αijδjxij + β∆wij(t− 1)

The second term is called momentum

Advantages:

• Easy to pass small local minima

• Keeps the weights moving in areas where the error is flat

• Increases the speed where the gradient stays unchanged

Disadvantages:

COMP-652, Lecture 5 - September 21, 2009 28

• With too much momentum, it can get out of a global maximum!
• One more parameter to tune, and more chances of divergence

COMP-652, Lecture 5 - September 21, 2009 29

Choosing the learning rate

• Backprop is VERY sensitive to the choice of learning rate
– Too large⇒ divergence
– Too small⇒ VERY slow learning
– The learning rate also influences the ability to escape local optima

• Very often, different learning rates are used for units inn different
layers
• It can be shown that each unit has its own optimal learning rate

COMP-652, Lecture 5 - September 21, 2009 30

Adjusting the learning rate: Delta-bar-delta

• Heuristic method, works best in batch mode (though there have been
attempts to make it incremental)
• The intuition:

– If the gradient direction is stable, the learning rate should be
increased

– If the gradient flips to the opposite direction the learning rate should
be decreased

• A running average of the gradient and a separate learning rate is kept
for each weight
• If the new gradient and the old average have the same sign, increase

the learning rate by a constant amount
• If they have opposite sign, decay the learning rate exponentially

COMP-652, Lecture 5 - September 21, 2009 31

How large should the network be?

• Overfitting occurs if there are too many parameters compared to the
amount of data available
• Choosing the number of hidden units:

– Too few hidden units do not allow the concept to be learned
– Too many lead to slow learning and overfitting
– If the n inputs are binary, log n is a good heuristic choice

• Choosing the number of layers
– Always start with one hidden layer
– Never go beyond 2 hidden layers, unless the task structure

suggests something different

COMP-652, Lecture 5 - September 21, 2009 32

Overtraining in feed-forward networks

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

Er
ro

r

Number of weight updates

Error versus weight updates (example 1)

Training set error
Validation set error

• Traditional overfitting is concerned with the number of parameters vs.
the number of instances
• In neural networks there is an additional phenomenon called

overtraining which occurs when weights take on large magnitudes,
pushing the sigmoids into saturation
• Effectively, as learning progresses, the network has more actual

parameters
• Use a validation set to decide when to stop training!

COMP-652, Lecture 5 - September 21, 2009 33

Finding the right network structure

• Destructive methods start with a large network and then remove
(prune) connections
• Constructive methods start with a small network (e.g. 1 hidden unit)

and add units as required to reduce error

COMP-652, Lecture 5 - September 21, 2009 34

Destructive methods

• Simple solution: consider removing each weight in turn (by setting it
to 0), and examine the effect on the error
• Weight decay: give each weight a chance to go to 0, unless it is

needed to decrease error:

∆wj = −αj
∂J

∂wj
− λwj

where λ is a decay rate
• Optimal brain damage:

– Train the network to a local optimum
– Approximate the saliency of each link or unit (i.e., its impact on the

performance of the network), using the Hessian matrix
– Greedily prune the element with the lowest saliency
This loop is repeated until the error starts to deteriorate

COMP-652, Lecture 5 - September 21, 2009 35

Constructive methods

• Dynamic node creation (Ash):
– Start with just one hidden unit, train using backprop
– If the error is still high, add another unit in the same layer and

repeat
Only one layer is constructed
• Meiosis networks (Hanson):

– Start with just one hidden unit, train using backprop
– Compute the variance of each weight during training
– If a unit has one or more weights of high variance, it is split into

two units, and the weights are perturbed
The intuition is that the new units will specialize to different functions.
• Cascade correlation: Add units to correlate with the residual error

COMP-652, Lecture 5 - September 21, 2009 36

Example applications

• Speech phoneme recognition [Waibel] and synthesis [Nettalk]
• Image classification [Kanade, Baluja, Rowley]
• Digit recognition [Bengio, Bouttou, LeCun et al - LeNet]
• Financial prediction
• Learning control [Pomerleau et al]

COMP-652, Lecture 5 - September 21, 2009 37

When to consider using neural networks

• Input is high-dimensional discrete or real-valued (e.g. raw sensor
input)
• Output is discrete or real valued, or a vector of values
• Possibly noisy data
• Training time is not important
• Form of target function is unknown
• Human readability of result is not important
• The computation of the output based on the input has to be fast

COMP-652, Lecture 5 - September 21, 2009 38

