Lecture 3: More on linear methods for regression

- Why least-squares? A probabilistic analysis
- L2 and L1 regularization for linear estimators
- Bayesian learning and regularization
Recall: Linear function approximation

• Given a set of examples \(\langle x_i, y_i \rangle_{i=1 \ldots m} \), we fit a hypothesis

\[
h_w(x) = \sum_{k=0}^{K-1} w_k \phi_k(x) = w^T \phi(x)
\]

where \(\phi_k \) are called basis functions

• The best \(w \) is considered the one which minimizes the sum-squared error over the training data:

\[
\sum_{i=1}^{m} (y_i - h_w(x_i))^2
\]

• We can find the best \(w \) in closed form:

\[
w = (\Phi^T \Phi)^{-1} \Phi^T y
\]

or by gradient descent (if we want to avoid the matrix inversion)
Coming back to mean-squared error function...

- Good intuitive feel (small errors are ignored, large errors are penalized)
- Nice math (closed-form solution, unique global optimum)
- Geometric interpretation (in our notation, \(t \) is \(y \) and \(y \) is \(h_w(x) \))

\[
\begin{align*}
S & \quad \varphi_1 \\
\varphi_2 & \quad y \\
t & \quad \text{Any other interpretation?}
\end{align*}
\]
A probabilistic assumption

• Assume y_i is a noisy target value, generated from a hypothesis $h_w(x)$
• More specifically, assume that there exists w such that:

\[y_i = h_w(x_i) + \epsilon_i \]

where ϵ_i is random variable (noise) drawn independently for each x_i according to some Gaussian (normal) distribution with mean zero and variance σ.
• How should we choose the parameter vector w?
Bayes theorem in learning

Let \(h \) be a hypothesis and \(D \) be the set of training data. Using Bayes theorem, we have:

\[
P(h|D) = \frac{P(D|h)P(h)}{P(D)},
\]

where:

- \(P(h) \) is the *prior probability of hypothesis* \(h \)
- \(P(D) = \int h P(D|h)P(h) \) is the probability of training data \(D \) (normalization, independent of \(h \))
- \(P(h|D) \) is the probability of \(h \) given \(D \)
- \(P(D|h) \) is the probability of \(D \) given \(h \) (*likelihood of the data*)
Choosing hypotheses

• What is the most probable hypothesis given the training data?

• Maximum a posteriori (MAP) hypothesis h_{MAP}:

$$
\begin{align*}
 h_{MAP} &= \arg \max_{h \in H} P(h|D) \\
 &= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)} \text{(using Bayes theorem)} \\
 &= \arg \max_{h \in H} P(D|h)P(h)
\end{align*}
$$

Last step is because $P(D)$ is independent of h (so constant for the maximization)

• This is the Bayesian answer (more in a minute)
Maximum likelihood estimation

\[h_{\text{MAP}} = \arg \max_{h \in H} P(D|h)P(h) \]

• If we assume \(P(h_i) = P(h_j) \) (all hypotheses are equally likely a priori) then we can further simplify, and choose the maximum likelihood (ML) hypothesis:

\[h_{\text{ML}} = \arg \max_{h \in H} P(D|h) = \arg \max_{h \in H} L(h) \]

• Standard assumption: the training examples are independently identically distributed (i.i.d.)

• This allows us to simplify \(P(D|h) \):

\[
P(D|h) = \prod_{i=1}^{m} P(\langle x_i, y_i \rangle|h) = \prod_{i=1}^{m} P(y_i|x_i; h)P(x_i)
\]
The log trick

• We want to maximize:

\[L(h) = \prod_{i=1}^{m} P(y_i|x_i; h) P(x_i) \]

This is a product, and products are hard to maximize!

• Instead, we will maximize \(\log L(h) \) (the log-likelihood function)

\[\log L(h) = \sum_{i=1}^{m} \log P(y_i|x_i; h) + \sum_{i=1}^{m} \log P(x_i) \]

• The second sum depends on \(D \), but not on \(h \), so it can be ignored in the search for a good hypothesis
Maximum likelihood for regression

• Adopt the assumption that:

\[y_i = h_w(x_i) + \epsilon_i, \]

where \(\epsilon_i \sim \mathcal{N}(0, \sigma) \).

• The best hypothesis maximizes the likelihood of \(y_i - h_w(x_i) = \epsilon_i \)

• Hence,

\[L(w) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{1}{2} \left(\frac{y_i - h_w(x_i)}{\sigma} \right)^2} \]

because the noise variables \(\epsilon_i \) are from a Gaussian distribution.
Applying the log trick

\[
\log L(w) = \sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \left(y_i - h_w(x_i) \right)^2} \right)
\]

\[
= \sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) - \sum_{i=1}^{m} \frac{1}{2} \frac{(y_i - h_w(x_i))^2}{\sigma^2}
\]

Maximizing the right hand side is the same as minimizing:

\[
\sum_{i=1}^{m} \frac{1}{2} \frac{(y_i - h_w(x_i))^2}{\sigma^2}
\]

This is our old friend, the sum-squared-error function! (the constants that are independent of \(h \) can again be ignored)
Maximum likelihood hypothesis for least-squares estimators

- Under the assumption that the training examples are i.i.d. and that we have \textit{Gaussian target noise}, the maximum likelihood parameters w are those minimizing the sum squared error:

$$w^* = \arg \min_w \sum_{i=1}^{m} (y_i - h_w(x_i))^2$$

- This makes explicit the hypothesis behind minimizing the sum-squared error
- If the noise is not normally distributed, maximizing the likelihood will not be the same as minimizing the sum-squared error (see homework 2)
- In practice, different loss functions may be needed
Regularization

- Remember the intuition: complicated hypotheses lead to overfitting
- Idea: change the error function to penalize hypothesis complexity:

\[J(w) = J_D(w) + \lambda J_{pen}(w) \]

This is called regularization in machine learning and shrinkage in statistics
- \(\lambda \) is called regularization coefficient and controls how much we value fitting the data well, vs. a simple hypothesis
Regularization for linear models

- A squared penalty on the weights would make the math work nicely in our case:
 \[\frac{1}{2} (\Phi w - y)^T (\Phi w - y) + \frac{\lambda}{2} w^T w \]

- This is also known as L_2 regularization, or weight decay in neural networks

- By re-grouping terms, we get:
 \[J_D(w) = \frac{1}{2} (w^T (\Phi^T \Phi + \lambda I) w - w^T \Phi^T y - y^T \Phi w + y^T y) \]

- Optimal solution (obtained by solving $\nabla_w J_D(w) = 0$)
 \[w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y \]
What L_2 regularization does

$$\arg\min_w \frac{1}{2} (\Phi w - y)^T (\Phi w - y) + \frac{\lambda}{2} w^T w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$$

- If $\lambda = 0$, the solution is the same as in regular least-squares linear regression
- If $\lambda \to \infty$, the solution $w \to 0$
- Positive λ will cause the magnitude of the weights to be smaller than in the usual linear solution
- A different view of regularization: we want to optimize the error while keeping the L_2 norm of the weights, $w^T w$, bounded.
Detour: Constrained optimization

Suppose we want to find

$$\min_w f(w)$$

such that $g(w) = 0$
Detour: Lagrange multipliers

- ∇g has to be orthogonal to the constraint surface (red curve)
- At the optimum, ∇f and ∇g have to be parallel (in same or opposite direction)
- Hence, there must exist some $\lambda \in \mathbb{R}$ such that $\nabla f + \lambda \nabla g = 0$
- **Lagrangian function**: $L(x, \lambda) = f(x) + \lambda g(x)$
 - λ is called **Lagrange multiplier**
- We obtain the solution to our optimization problem by setting both $\nabla_x L = 0$ and $\frac{\partial L}{\partial \lambda} = 0$
Detour: Inequality constraints

- Suppose we want to find

\[
\min_w f(w)
\]

such that \(g(w) \geq 0 \)

- In the interior \((g(x > 0)) \) - simply find \(\nabla f(x) = 0 \)
- On the boundary \((g(x = 0)) \) - same situation as before, but the sign matters this time
 - For minimization, we want \(\nabla f \) pointing in the same direction as \(\nabla g \)
Detour: KKT conditions

- Based on the previous observations, let the Lagrangian be \(L(x, \lambda) = f(x) - \lambda g(x) \)
- We minimize \(L \) wrt \(x \) subject to the following constraints:
 \[
 \begin{align*}
 \lambda & \geq 0 \\
 g(x) & \geq 0 \\
 \lambda g(x) & = 0
 \end{align*}
 \]
- These are called *Karush-Kuhn-Tucker (KKT) conditions*
L₂ Regularization for linear models revisited

- Optimization problem: minimize error while keeping norm of the weights bounded

\[
\min_w J_D(w) = \min_w (\Phi w - y)^T (\Phi w - y)
\]

such that \(w^T w \leq \eta \)

- The Lagrangian is:

\[
L(w, \lambda) = J_D(w) - \lambda (\eta - w^T w) = (\Phi w - y)^T (\Phi w - y) + \lambda w^T w - \lambda \eta
\]

- For a fixed \(\lambda \), and \(\eta = \lambda^{-1} \), the best \(w \) is the same as obtained by weight decay
Visualizing regularization (2 parameters)

\[w^* = (\Phi^T \Phi + \lambda I)^{-1} \Phi y \]
Pros and cons of L_2 regularization

- If λ is at a “good” value, regularization helps to avoid overfitting
- Choosing λ may be hard: cross-validation is often used
- If there are irrelevant features in the input (i.e. features that do not affect the output), L_2 will give them small, but non-zero weights.
- Ideally, irrelevant input should have weights exactly equal to 0.
\textbf{L_1 Regularization for linear models}

- Instead of requiring the L_2 norm of the weight vector to be bounded, make the requirement on the L_1 norm:

\[
\min_w J_D(w) = \min_w (\Phi w - y)^T(\Phi w - y)
\]

such that \[\sum_{i=1}^{n} |w_i| \leq \eta\]

- This yields an algorithm called Lasso (Tibshirani, 1996)
Solving L_1 regularization

- The optimization problem is a quadratic program
- There is one constraint for each possible sign of the weights (2^n constraints for n weights)
- For example, with two weights:

$$\min_{w_1, w_2} \sum_{j=1}^{m} (y_j - w_1 x_1 - w_2 x_2)^2$$

such that $w_1 + w_2 \leq \eta$

$w_1 - w_2 \leq \eta$

$-w_1 + w_2 \leq \eta$

$-w_1 - w_2 \leq \eta$

- Solving this program directly can be done for problems with a small number of inputs
• If λ is big enough, the circle is very likely to intersect the diamond at one of the corners
• This makes L_1 regularization much more likely to make some weights exactly 0
Pros and cons of L_1 regularization

- If there are irrelevant input features, Lasso is likely to make their weights 0, while L_2 is likely to just make all weights small.
- Lasso is biased towards providing *sparse solutions* in general.
- Lasso optimization is computationally more expensive than L_2.
- More efficient solution methods have to be used for large numbers of inputs (e.g. least-angle regression, 2003).
- L_1 methods of various types are very popular at the moment.
Bayesian view of regularization

- Start with a *prior distribution* over hypotheses
- As data comes in, compute a *posterior distribution*
- We often work with *conjugate priors*, which means that when combining the prior with the likelihood of the data, one obtains the posterior in the same form as the prior
- Regularization can be obtained from particular types of prior (usually, priors that put more probability on simple hypotheses)
- E.g. L_2 regularization can be obtained using a circular Gaussian prior for the weights, and the posterior will also be Gaussian
- E.g. L_1 regularization uses double-exponential prior (see (Tibshirani, 1996))
Bayesian view of regularization

- Prior is round Gaussian
- Posterior will be skewed by the data
What does the Bayesian view give us?

- Circles are data points
- Green is the true function
- Red lines on right are drawn from the posterior distribution
What does the Bayesian view give us?

- Functions drawn from the posterior can be very different
- Uncertainty decreases where there are data points
What does the Bayesian view give us?

• Uncertainty estimates, i.e. how sure we are of the value of the function
• These can be used to guide active learning: ask about inputs for which the uncertainty in the value of the function is very high
• In the limit, Bayesian and maximum likelihood learning converge to the same answer
• In the short term, one needs a good prior to get good estimates of the parameters
• Sometimes the prior is overwhelmed by the data likelihood too early.
• Using the Bayesian approach does NOT eliminate the need to do cross-validation in general
• More on this later...