
Lecture 3: More on linear methods for regression

• Why least-squares? A probabilistic analysis
• L2 and L1 regularization for linear estimators
• Bayesian learning and regularization
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Recall: Linear function approximation

• Given a set of examples 〈xi, yi〉i=1...m, we fit a hypothesis

hw(x) =
K−1∑
k=0

wkφk(x) = wTφ(x)

where φk are called basis functions
• The best w is considered the one which minimizes the sum-squared

error over the training data:
m∑
i=1

(yi − hw(xi))2

• We can find the best w in closed form:

w = (ΦTΦ)−1ΦTy

or by gradient descent (if we want to avoid the matrix inversion)
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Coming back to mean-squared error function...

• Good intuitive feel (small errors are ignored, large errors are
penalized)
• Nice math (closed-form solution, unique global optimum)
• Geometric interpretation (in our notation, t is y and y is hw(x))

S
t

yϕ1

ϕ2

• Any other interpretation?
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A probabilistic assumption

• Assume yi is a noisy target value, generated from a hypothesis hw(x)
• More specifically, assume that there exists w such that:

yi = hw(xi) + εi

where εi is random variable (noise) drawn independently for each
xi according to some Gaussian (normal) distribution with mean zero
and variance σ.
• How should we choose the parameter vector w?
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Bayes theorem in learning
Let h be a hypothesis and D be the set of training data.
Using Bayes theorem, we have:

P (h|D) =
P (D|h)P (h)

P (D)
,

where:

• P (h) is the prior probability of hypothesis h
• P (D) =

∫
h
P (D|h)P (h) is the probability of training data D

(normalization, independent of h)
• P (h|D) is the probability of h given D
• P (D|h) is the probability of D given h (likelihood of the data)
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Choosing hypotheses

• What is the most probable hypothesis given the training data?
• Maximum a posteriori (MAP) hypothesis hMAP :

hMAP = arg max
h∈H

P (h|D)

= arg max
h∈H

P (D|h)P (h)
P (D)

(using Bayes theorem)

= arg max
h∈H

P (D|h)P (h)

Last step is because P (D) is independent of h (so constant for the
maximization)
• This is the Bayesian answer (more in a minute)
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Maximum likelihood estimation

hMAP = arg max
h∈H

P (D|h)P (h)

• If we assume P (hi) = P (hj) (all hypotheses are equally likely a priori)
then we can further simplify, and choose the maximum likelihood
(ML) hypothesis:

hML = arg max
h∈H

P (D|h) = arg max
h∈H

L(h)

• Standard assumption: the training examples are independently
identically distributed (i.i.d.)
• This alows us to simplify P (D|h):

P (D|h) =
m∏
i=1

P (〈xi, yi〉|h) =
m∏
i=1

P (yi|xi;h)P (xi)
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The log trick

• We want to maximize:

L(h) =
m∏
i=1

P (yi|xi;h)P (xi)

This is a product, and products are hard to maximize!
• Instead, we will maximize logL(h)! (the log-likelihood function)

logL(h) =
m∑
i=1

logP (yi|xi;h) +
m∑
i=1

logP (xi)

• The second sum depends on D, but not on h, so it can be ignored in
the search for a good hypothesis
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Maximum likelihood for regression

• Adopt the assumption that:

yi = hw(xi) + εi,

where εi ∼ N (0, σ).
• The best hypothesis maximizes the likelihood of yi − hw(xi) = εi

• Hence,

L(w) =
m∏
i=1

1√
2πσ2

e
−1

2

“
yi−hw(xi)

σ

”2

because the noise variables εi are from a Gaussian distribution
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Applying the log trick

logL(w) =
m∑
i=1

log

(
1√

2πσ2
e
−1

2
(yi−hw(xi))

2

σ2

)

=
m∑
i=1

log
(

1√
2πσ2

)
−

m∑
i=1

1
2
(yi − hw(xi))2

σ2

Maximizing the right hand side is the same as minimizing:

m∑
i=1

1
2
(yi − hw(xi))2

σ2

This is our old friend, the sum-squared-error function! (the constants
that are independent of h can again be ignored)
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Maximum likelihood hypothesis for least-squares
estimators

• Under the assumption that the training examples are i.i.d. and that
we have Gaussian target noise, the maximum likelihood parameters
w are those minimizing the sum squared error:

w∗ = arg min
w

m∑
i=1

(yi − hw(xi))
2

• This makes explicit the hypothesis behind minimizing the sum-
squared error
• If the noise is not normally distributed, maximizing the likelihood will

not be the same as minimizing the sum-squared error (see homework
2)
• In practice, different loss functions may be needed
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Regularization

• Remember the intuition: complicated hypotheses lead to overfitting
• Idea: change the error function to penalize hypothesis complexity:

J(w) = JD(w) + λJpen(w)

This is called regularization in machine learning and shrinkage in
statistics
• λ is called regularization coefficient and controls how much we value

fitting the data well, vs. a simple hypothesis
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Regularization for linear models

• A squared penalty on the weights would make the math work nicely
in our case:

1
2
(Φw − y)T (Φw − y) +

λ

2
wTw

• This is also known as L2 regularization, or weight decay in neural
networks
• By re-grouping terms, we get:

JD(w) =
1
2
(wT (ΦTΦ + λI)w −wTΦTy − yTΦw + yTy)

• Optimal solution (obtained by solving ∇wJD(w) = 0)

w = (ΦTΦ + λI)−1ΦTy
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What L2 regularization does

arg min
w

1
2
(Φw − y)T (Φw − y) +

λ

2
wTw = (ΦTΦ + λI)−1ΦTy

• If λ = 0, the solution is the same as in regular least-squares linear
regression
• If λ→∞, the solution w→ 0
• Positive λ will cause the magnitude of the weights to be smaller than

in the usual linear solution
• A different view of regularization: we want to optimize the error while

keeping the L2 norm of the weights, wTw, bounded.
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Detour: Constrained optimization
Suppose we want to find

min
w
f(w)

such that g(w) = 0

∇f(x)

∇g(x)

xA

g(x) = 0
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Detour: Lagrange multipliers

∇f(x)

∇g(x)

xA

g(x) = 0

• ∇g has to be orthogonal to the constraint surface (red curve)
• At the optimum, ∇f and ∇g have to be parallel (in same or opposite

direction)
• Hence, there must exist some λ ∈ R such that ∇f + λ∇g = 0
• Lagrangian function: L(x, λ) = f(x) + λg(x)
λ is called Lagrange multiplier
• We obtain the solution to our optimization problem by setting both
∇xL = 0 and ∂L

∂λ = 0
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Detour: Inequality constraints

• Suppose we want to find

min
w
f(w)

such that g(w) ≥ 0

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0

• In the interior (g(x > 0)) - simply find ∇f(x) = 0
• On the boundary (g(x = 0)) - same situation as before, but the sign

matters this time
For minimization, we want ∇f pointing in the same direction as ∇g
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Detour: KKT conditions

• Based on the previous observations, let the Lagrangian be L(x, λ) =
f(x)− λg(x)
• We minimize L wrt x subject to the following constraints:

λ ≥ 0

g(x) ≥ 0

λg(x) = 0

• These are called Karush-Kuhn-Tucker (KKT) conditions
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L2 Regularization for linear models revisited

• Optimization problem: minimize error while keeping norm of the
weights bounded

min
w
JD(w) = min

w
(Φw − y)T (Φw − y)

such that wTw ≤ η

• The Lagrangian is:

L(w, λ) = JD(w)−λ(η−wTw) = (Φw−y)T (Φw−y)+λwTw−λη

• For a fixed λ, and η = λ−1, the best w is the same as obtained by
weight decay
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Visualizing regularization (2 parameters)

w1

w2

w?

w∗ = (ΦTΦ + λI)−1Φy
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Pros and cons of L2 regularization

• If λ is at a “good” value, regularization helps to avoid overfitting
• Choosing λ may be hard: cross-validation is often used
• If there are irrelevant features in the input (i.e. features that do not

affect the output), L2 will give them small, but non-zero weights.
• Ideally, irrelevant input should have weights exactly equal to 0.
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L1 Regularization for linear models

• Instead of requiring the L2 norm of the weight vector to be bounded,
make the requirement on the L1 norm:

min
w
JD(w) = min

w
(Φw − y)T (Φw − y)

such that
n∑
i=1

|wi| ≤ η

• This yields an algorithm called Lasso (Tibshirani, 1996)
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Solving L1 regularization

• The optimization problem is a quadratic program
• There is one constraint for each possible sign of the weights (2n

constraints for n weights)
• For example, with two weights:

min
w1,w2

m∑
j=1

(yj − w1x1 − w2x2)2

such that w1 + w2 ≤ η

w1 − w2 ≤ η

−w1 + w2 ≤ η

−w1 − w2 ≤ η

• Solving this program directly can be done for problems with a small
number of inputs
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Visualizing L1 regularization

w1

w2

w?

• If λ is big enough, the circle is very likely to intersect the diamond at
one of the corners
• This makes L1 regularization much more likely to make some weights

exactly 0
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Pros and cons of L1 regularization

• If there are irrelevant input features, Lasso is likely to make their
weights 0, while L2 is likely to just make all weights small
• Lasso is biased towards providing sparse solutions in general
• Lasso optimization is computationally more expensive than L2

• More efficient solution methods have to be used for large numbers of
inputs (e.g. least-angle regression, 2003).
• L1 methods of various types are very popular at the moment
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Bayesian view of regularization

• Start with a prior distribution over hypotheses
• As data comes in, compute a posterior distribution
• We often work with conjugate priors, which means that when

combining the prior with the likelihood of the data, one obtains the
posterior in the same form as the prior
• Regularization can be obtained from particular types of prior (usually,

priors that put more probability on simple hypotheses)
• E.g. L2 regularization can be obtained using a circular Gaussian prior

for the weights, and the posterior will also be Gaussian
• E.g. L1 regularization uses double-exponential prior (see (Tibshirani,

1996))
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Bayesian view of regularization

• Prior is round Gaussian
• Posterior will be skewed by the data
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What does the Bayesian view give us?
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• Circles are data points
• Green is the true function
• Red lines on right are drawn from the posterior distribution
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What does the Bayesian view give us?
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• Functions drawn from the posterior can be very different
• Uncertainty decreases where there are data points
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What does the Bayesian view give us?

• Uncertainty estimates, i.e. how sure we are of the value of the
function
• These can be used to guide active learning: ask about inputs for

which the uncertainty in the value of the function is very high
• In the limit, Bayesian and maximum likelihood learning converge to

the same answer
• In the short term, one needs a good prior to get good estimates of

the parameters
• Sometimes the prior is overwhelmed by the data likelihood too early.
• Using the Bayesian approach does NOT eliminate the need to do

cross-validation in general
• More on this later...
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