Lecture 21: Dimensionality Reduction (II)

e Kernel PCA
e Multi-dimensional scaling

e Self-organizing maps

November 26, 2007 1 COMP-652 Lecture 21

Recall: Principal Component analysis (PCA)

Let X1,...Xm, € R" be the data
Consider the scatter matrix (covariance matrix):

1 ™m
T
S = — E XiX;
m “
1 =1

The principal components v; are the eigenvectors of S:

SVj :)\jvj,jzl,...n

The eigenvectors are normalized: v} v; = 1

We sort these vectors in the decreasing order of the
corresponding eigenvalues

You can pick the first k components, or determine k based on
how much variance is accounted for

The data will be represented by projectingitontov;,2 =1,...k

November 26, 2007 2 COMP-652 Lecture 21

Recall: Difficult example

PCA will make no difference between these examples

November 26, 2007 3 COMP-652 Lecture 21

What we want

7r
+ Ground truth
6| < Moisy examples
Carrupted
5| Reconstructed
4
FF
2F
1F
o
-1 F
-2 F
-3k
-i 1 1 1 | 1 1 1 1 1 | 1
4 -3 -2 1 0 1 2 3 4 5 B 7

November 26, 2007 4 COMP-652 Lecture 21

Making PCA non-linear

® Suppose that instead of using the points x; as is, we wanted to

go to some different feature space ¢(x;) € R

e E.g. using polar coordinates instead of cartesian coordinates
would help us deal with the circle

e |n the higher dimensional space, we can then do PCA

e The result will be non-linear in the original data space!

e Similar idea to support vector machines

November 26, 2007 5 COMP-652 Lecture 21

PCA in feature space ()

e Suppose for the moment that the mean of the data in feature

spaceis > .~ ¢(x;) =0
e The covariance matrix Is:

1 m
C=—) o(xi)p(xi)”
ma—
e The eigenvectors are:

CVjI)\jVj,jIl,...N

e \We want to avoid explicitly going to feature space - instead we
want to work with kernels:

K(x;,%;5) = ¢(x:)" (%)

November 26, 2007 6 COMP-652 Lecture 21

PCA in feature space (ll)

e Re-write the PCA equation:
1 & - |
— E¢(Xz‘)¢(x7;) v, =Ajv;,j=1,...N
m =

® So the eigenvectors can be written as a linear combination for
features:

vi=) ajid(xi)
1=1

e So finding the eigenvectors is equivalent to finding the

coefficients a;;,7 =1,...N,io=1,...m

November 26, 2007 7 COMP-652 Lecture 21

PCA In feature space (llI)

e By substituting this back into the equation we get:
1 ™m ™m m
— > d(xi)p(xi) " (E ajz¢(xz)> =X > ajd(x)
mi= =1 =1
e \\Ve can re-write this as:
1 m™m m™m m™m
— > b(x:) (E aji K (xi, Xl)> =X > ajé(x)
mi= I—1 =1
e A small trick: multiply this by ¢ (xz)” to the left:
1 m™m ™m m™m
— > b(xi) " (xi) <Z aji K (x;, Xl)> =X) ajd(xp) o(x))
=1 =1 =1

e By plugging in the kernel and rearranging (Doina does this on

the board) we get: K*’a; = m\,;Ka,

November 26, 2007 8 COMP-652 Lecture 21

PCA In feature space (IV)

e \We can remove a factor of K from both sides of the matrix (this
will only affect eigenvectors with eigenvalues 0, which will not be
principle components anyway):

Kaj — m)\j aj

e \We have a normalization condition for the a; vectors:

m m
VJTVJ' =1= Z Zajlajk¢(xl)T¢(xk) =1= a;‘FKaj =1
k=11=1
e Using the above equation again we get:)\jmafaj =1,Vy
e For a new point x, its projection onto the principal components
IS:

d(x)Tv; =D ajo(x)T(xi) = > ajiK(x,x;)
i—1 i—1

November 26, 2007 9 COMP-652 Lecture 21

Normalizing the feature space

e In general, the features ¢(x;) may not have mean 0
e We want to work with ¢(x;) = ¢(x;) — LS o(xk)

e The corresponding kernel matrix entries are given by:

~ ~

K (x5, x1) = ¢p(x1)" (x;)
e After some algebra, we get:

K=K - 211/mK + ll/mKll/m

where 14 /,,, is the matrix with all elements equal to 1/m

November 26, 2007 10 COMP-652 Lecture 21

Summary of kernel PCA

1. Pick a kernel

2. Construct the normalized kernel matrix K of the data (this will
be of dimension m X m)

3. Find the eigenvalues and eigenvectors of this matrix \;, a;

4. For any data point (new or old), we can represent it as the

following set of features:

yj—g a;; K(x,%;),7=1,...m

November 26, 2007 11 COMP-652 Lecture 21

Example: De-noising images

Original data

{2 SIVIONA /181710

Data corrupted with Gaussian noise

Result after linear PCA

i =K G e [e Bl E

Result after kernel PCA, Gaussian kernel

LA NSIYIVNGE /181710

November 26, 2007 12 COMP-652 Lecture 21

PCA vs Kernel PCA

e Kernel PCA can give a good re-encoding of the data when it lies
along a non-linear manifold

e The kernel matrix is m x m, so kernel PCA will have difficulties
if we have lots of data points

e In this case, we may need to use dictionary methods to pick a
subset of the data

e For general kernels, we may not be able to easily visualize what

the image of a point is in the input space

November 26, 2007 13 COMP-652 Lecture 21

Multi-dimensional scaling

® |nput:
— An m x m dissimilarity matrix DS, where DS(i, j) is the
distance between instances x; and x;
— Desired dimension d of the embedding.
e Output:
— Coordinates z; € R for each instance 7 that minimize a
“stress” function quantifying the mismatch between distances

in DS and distances of the data representation in R,

November 26, 2007 14 COMP-652 Lecture 21

Stress functions

Common stress functions include:

® The least-squares or Kruskal-Shephard criterion:
.. 2
> (DS,) — ||z — 2])
i=1 j#i
e The Sammon mapping:

(DS(i,) — ||lzi — 2;]))°
ZZ DS(i, 7) >

1=1 j+#1

which emphasizes getting small distances correct.

Gradient-based optimization is usually used to find z;

November 26, 2007 15 COMP-652 Lecture 21

Self-organizing maps

e [f the instances are vectors in k", try to stretch a “grid” of points
In . dimensions to approximate the data.

e The indices of the grid points indicate neighborhood

relationships

e E.g.,in 2D, GG(i, 7) is neighbor with G(i — 1,j), G(i + 1, j),
G(i,7—1),G(t,7 +1).

e The grid points are iteratively moved, "pulled”, by data points,
similar to how the centroids of K-means clustering move
around.

e The data can then be visualized by mapping each object to the

nearest grid point.

November 26, 2007 16 COMP-652 Lecture 21

Self-organizing maps

® Inputs:
— Aset D = {x1,...,Xm} of n-dimensional real vectors.
— A dimension for the grid (1,2 or 3 if we want to plot it.)
— Number of grid points along each dimension.

e Output: Coordinates (in R" for each grid-point.

November 26, 2007 17 COMP-652 Lecture 21

SOM learning algorithm

e |nitialize the grid points.
® Repeat
— Choose a data point x at random.
— Find the nearest grid point; e.g., in 2D:
G(i",5") = argmin ||G (7, j) — x|

)

— Find the “neighborhood” of G* (i, §)

— Move all points G in the neighborhood towards x:
G—G+as(x,G)(x - G)

where s(x, G) is a similarity function, equalto 1 if x = G

and decreasing with ||x — G| (e.g. Gaussian)

November 26, 2007 18 COMP-652 Lecture 21

Example

November 26, 2007 19 COMP-652 Lecture 21

Remarks

e Typically the learning rate o — 0 with time

e The SOM builds a topographical map of the input space, putting

more points where the data is dense
e |nstances that are close in the input space will be mapped to
units which are neighbors in the grid.
e |f the data approximately lies on a curve or surface, the SOM
may capture that structure, but:
— Different runs can find different solutions.
— If we try to fit data on a 2D surface with a 1D grid, well. ..
e More sophisticated versions of SOMs use different updating

rules, different neighboring functions

November 26, 2007 20 COMP-652 Lecture 21

