Lecture 20: Dimensionality Reduction

e Overview
e Self-organizing maps

e Principal component analysis
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Motivation for dimensionality reduction

e Clustering, flat or hierarchical, can group the data according to
similarity, helping visualization and discovery.
e But we still cannot plot high-dimensional (or non-numeric) data.
e \We also have to guess at the number of clusters.
e \We may want to “understand” better how the data was
generated or how “variable” it is
e Dimensionality reduction (or embedding) techniques:
— Assign instances to new coordinates, in a space that is much
smaller-dimensional (even 2D or 3D for visualization).
— Approximately preserve similarity/distance relationships
between instances.

— Allow us to “see” distance relationships more directly.
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What is dimensionality reduction?

e Mapping instances to real vectors, usually with few dimensions
e Possible uses:

— Visualization, comparison

— OQultlier detection

— Further machine learning
e Some techniques:

— Principal components analysis (linear)

— Independent components analysis (linear or nonlinear)

— Self-organizing maps (nonlinear)

— Multi-dimensional scaling (nonlinear, allows non-numeric

data objects)
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What is the true dimensionality of this data?
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What is the true dimensionality of this data?
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What is the true dimensionality of this data?
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What is the true dimensionality of this data?
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Remarks

e All dimensionality reduction techniques are based on an implicit
assumption that the data lies along some

low-dimensional manifold

e This is the case for the first three examples, despite being
plotted in 2D

e In the last example, the data has been generated randomly in
2D, so no dimensionality reduction is possible without losing
Information

e The first three cases are in increasing order of difficulty, from the

point of view of existing techniques.
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Self-organizing maps

e Assume the data objects are real vectors of length n.
e Try to stretch a “grid” of points in n-dimensional space to
approximate the data.

e The indices of the grid points indicate neighborhood

relationships

e E.g., in 2D, G(4, 7) is neighbor with G(i — 1,35), G(i + 1, j),
G(i,j—1),G(i,7 +1).

e The grid points are iteratively moved, "pulled”, by data points,
similar to how the centroids of K-means clustering move
around.

e The data can then be visualized by mapping each object to the

nearest grid point.
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Self-organizing maps

® |nputs:
— Aset D = {x1,...,Xm | Of n-dimensional real vectors.
— A dimension for the grid (1,2 or 3 if we want to plot it.)
— Number of grid points along each dimension.
e Output: Coordinates G in " for each grid-point.
E.g., for the 2D grid case, G (i, j) € R" specifies the

coordinates of grid-point (, ).
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SOM learning algorithm

e [nitialize the grid points.
® Repeat
— Choose a data point x at random.
— Find the nearest grid point; e.g., in 2D:
G* = G(i",j) = arg min [|G(i, j) — x|

Y

— Find the “neighborhood” of G™

— Move all points G in the neighborhood towards x:
G—G+ae(x,G)(x— G)

where e(x, G) is a similarity function, equalto 1 if x = G

and decreasing with |[x — G| (e.g. Gaussian)
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Remarks

e DHS has nice pictures of SOMs at work
e Typically the learning rate a — 0 with time

e The SOM builds a topographical map of the input space, putting

more points where the data is dense
e [nstances that are close in the input space will be mapped to
units which are neighbors in the grid.
e |f the data approximately lies on a curve or surface, the SOM
may capture that structure, but:
— Different runs can find different solutions.
— If we try to fit data on a 2D surface with a 1D grid, well. ..
e More sophisticated versions of SOMs use different updating

rules, different neighboring functions
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Back to the example

e SOMs will put units along the curve, where the data lies

e But there are other interesting things about this data!

e Can we find a good model for it?
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Simple Principal Component Analysis (PCA)

e Given: m data objects, each a length-n real vector.

® Suppose we want a 1-dimensional representation of that data,
iInstead of n-dimensional.

e Specifically, we will:
— Choose a line in R" that “best represents” the data.

— Assign each data object to a point along that line.
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Which line is best?
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How do we assign points to lines?
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Recall a useful tool: Covariance

e Covariance quantifies a linear relationship (if any) between two

random variables X and Y.
Cov(X,Y)=FE{(X - FEX))(Y —-E®Y))}

e Given m samples of X and Y, covariance can be estimated as

™m

—— > (@ — px)(ys — py)

m — 1 4
=1

where nx = Z:’;l T and ny = Z;Zl Yi.
e Note: Cov(X, X) = Var(X).
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Reconstruction error

e Letourline be represented as b + av forb,v € R", o € K.
For later convenience, assume ||v|| = 1.
e Each instance x; is assigned a point on the line x; = b + a; V.

e The (squared Euclidean) reconstruction error for instance 7 is

n

Ixi — %al|* =) (x:i(4) — %i(4))°

j=1

e \We want to choose b, v, and the «; to minimize the total

reconstruction error over all data points:

m
R=>|xi — %’
1=1
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A constrained optimization problem!

min  ||x; — (b + a;Vv)||?
wrt. b,v,a;,t=1,...n

st. vl =1
We can write down the Lagrangian and try to solve directly, but this

gets a bit difficult... (see homework 7)
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Minimizing reconstruction error: b and the «;

e Suppose we fix v. Now we have an unconstrained optimization

problem!
e By taking the gradient of the reconstruction error and setting it
to O we get that an optimal choice for b is

1 "
b:E;Xi,

e From this, we get a; = v - (x; — b)
e By substituting, we get: X; = b + v - (x; — b).
e [ntuitively:
— The line goes through the centroid of the data.
— Instances are projected orthogonally on the line to get the

associated point.
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Example data
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Example with v o< (1,0.3)
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Example with v oc (1, —0.3)
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Minimizing reconstruction error: the scatter matrix

e Substituting back into the formula for the reconstruction error,

we get that v should maximize
viSv,

where S is an n X n matrix with

™m

S(k,1) = > _(xi(k) = b(k))(x:(I) — b(1))

i=1
e Note that S(k, ) is proportional to the estimated covariance

between the kth and [th dimension in the data.

e S is called the scatter matrix .
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Optimal choice of Vv

e Recall: an eigenvector u of a matrix A satisfies Au = Au,

where \ € R is the eigenvalue .

e Fact: the scatter matrix, .S, has n non-negative eigenvalues and
n orthogonal eigenvectors.
e The v that maximizes v’ Sv is the eigenvector of S with the

largest eigenvalue (homework 7)
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Example with optimal line: b = (0.54,0.52), v o< (1,0.45)
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Remarks

e The line b 4+ av is the first principal component

e The variance of the data along the line b 4+ av is as large as

along any other line.

e b, v, and the «; can be computed easily in polynomial time.
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Reduction to d dimensions

e More generally, we can create a d-dimensional representation
of our data by projecting the instances onto a hyperplane
bfb+ alvi + ...+ avy.

e |f we assume the v; are of unit length and orthogonal, then the
optimal choices are:
— b is the mean of the data (as before)
— The v, are orthogonal eigenvectors of S corresponding to its

d largest eigenvalues.

— Each instance is projected orthogonally on the hyperplane.
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Remarks

® b, the eigenvalues, the v, and the projections of the instances
can all be computing in polynomial time.

e The magnitude of the jth—largest eigenvalue, \;, tells you how
much variability in the data is captured by the jth principal
component

e So you have feedback on how to choose d!

e When the eigenvalues are sorted in decreasing order, the
proportion of the variance captured by the first d components is:

A1+ -+ Ag
A1+ Ag+ Ager + o+ A

e So if a “big” drop occurs in the eigenvalues at some point, that

suggests a good dimension cutoff
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Example: A1 = 0.0938, Ao = 0.0007

November 22, 2005 31 COMP-652 Lecture 20



Example: A\; = 0.1260, A\, = 0.0054
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Example: A\; = 0.0884, Ay = 0.0725
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Example: Ay = 0.0881, Ao = 0.0769
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More remarks

e Outliers have a big effect on the covariance matrix, so they can
affect the eignevectors quite a bit

e A simple examination of the pairwise distances between
Instances can help discard points that are very far away (for the
purpose of PCA)

e [f the variances in the original dimensions vary considerably,
they can “muddle” the true correlations. There are two solutions:
— work with the correlation of the original data, instead of

covariance matrix

— normalize the input dimensions individually before PCA

® |n certain cases, the eigenvectors are meaningful; e.g. in vision,

they can be displayed as images (“eigenfaces”)
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Uses of PCA

® Pre-processing for a supervised learning algorithm, e.g. for
Image data, robotic sensor data

e Used with great success in image and speech processing

e Visualization

e EXxploratory data analysis

e Removing the linear component of a signal (before fancier

non-linear models are applied)
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