
Lecture 20: Dimensionality Reduction

• Overview

• Self-organizing maps

• Principal component analysis

November 22, 2005 1 COMP-652 Lecture 20

Motivation for dimensionality reduction

• Clustering, flat or hierarchical, can group the data according to

similarity, helping visualization and discovery.

• But we still cannot plot high-dimensional (or non-numeric) data.

• We also have to guess at the number of clusters.

• We may want to “understand” better how the data was

generated or how “variable” it is

• Dimensionality reduction (or embedding) techniques:

– Assign instances to new coordinates, in a space that is much

smaller-dimensional (even 2D or 3D for visualization).

– Approximately preserve similarity/distance relationships

between instances.

– Allow us to “see” distance relationships more directly.

November 22, 2005 2 COMP-652 Lecture 20

What is dimensionality reduction?

• Mapping instances to real vectors, usually with few dimensions

• Possible uses:

– Visualization, comparison

– Outlier detection

– Further machine learning

• Some techniques:

– Principal components analysis (linear)

– Independent components analysis (linear or nonlinear)

– Self-organizing maps (nonlinear)

– Multi-dimensional scaling (nonlinear, allows non-numeric

data objects)

November 22, 2005 3 COMP-652 Lecture 20

What is the true dimensionality of this data?

November 22, 2005 4 COMP-652 Lecture 20

What is the true dimensionality of this data?

November 22, 2005 5 COMP-652 Lecture 20

What is the true dimensionality of this data?

November 22, 2005 6 COMP-652 Lecture 20

What is the true dimensionality of this data?

November 22, 2005 7 COMP-652 Lecture 20

Remarks

• All dimensionality reduction techniques are based on an implicit

assumption that the data lies along some

low-dimensional manifold

• This is the case for the first three examples, despite being

plotted in 2D

• In the last example, the data has been generated randomly in

2D, so no dimensionality reduction is possible without losing

information

• The first three cases are in increasing order of difficulty, from the

point of view of existing techniques.

November 22, 2005 8 COMP-652 Lecture 20

Self-organizing maps

• Assume the data objects are real vectors of length n.

• Try to stretch a “grid” of points in n-dimensional space to

approximate the data.

• The indices of the grid points indicate neighborhood

relationships

• E.g., in 2D, G(i, j) is neighbor with G(i− 1, j), G(i + 1, j),

G(i, j − 1), G(i, j + 1).

• The grid points are iteratively moved, ”pulled”, by data points,

similar to how the centroids of K-means clustering move

around.

• The data can then be visualized by mapping each object to the

nearest grid point.

November 22, 2005 9 COMP-652 Lecture 20

Self-organizing maps

• Inputs:

– A set D = {x1, . . . ,xm} of n-dimensional real vectors.

– A dimension for the grid (1,2 or 3 if we want to plot it.)

– Number of grid points along each dimension.

• Output: Coordinates G in ℜn for each grid-point.

E.g., for the 2D grid case, G(i, j) ∈ ℜn specifies the

coordinates of grid-point (i, j).

November 22, 2005 10 COMP-652 Lecture 20

SOM learning algorithm

• Initialize the grid points.

• Repeat

– Choose a data point x at random.

– Find the nearest grid point; e.g., in 2D:

G
∗ = G(i∗, j∗) = arg min

i,j
‖G(i, j)− x‖

– Find the “neighborhood” of G∗

– Move all points G in the neighborhood towards x:

G← G + αe(x,G)(x−G)

where e(x,G) is a similarity function, equal to 1 if x = G

and decreasing with |x−G| (e.g. Gaussian)

November 22, 2005 11 COMP-652 Lecture 20

Remarks

• DHS has nice pictures of SOMs at work

• Typically the learning rate α→ 0 with time

• The SOM builds a topographical map of the input space, putting

more points where the data is dense

• Instances that are close in the input space will be mapped to

units which are neighbors in the grid.

• If the data approximately lies on a curve or surface, the SOM

may capture that structure, but:

– Different runs can find different solutions.

– If we try to fit data on a 2D surface with a 1D grid, well. . .

• More sophisticated versions of SOMs use different updating

rules, different neighboring functions

November 22, 2005 12 COMP-652 Lecture 20

Back to the example

• SOMs will put units along the curve, where the data lies

• But there are other interesting things about this data!

• Can we find a good model for it?

November 22, 2005 13 COMP-652 Lecture 20

Simple Principal Component Analysis (PCA)

• Given: m data objects, each a length-n real vector.

• Suppose we want a 1-dimensional representation of that data,

instead of n-dimensional.

• Specifically, we will:

– Choose a line in ℜn that “best represents” the data.

– Assign each data object to a point along that line.

November 22, 2005 14 COMP-652 Lecture 20

Which line is best?

?

?

?

November 22, 2005 15 COMP-652 Lecture 20

How do we assign points to lines?

?

November 22, 2005 16 COMP-652 Lecture 20

Recall a useful tool: Covariance

• Covariance quantifies a linear relationship (if any) between two

random variables X and Y .

Cov(X, Y) = E{(X − E(X))(Y − E(Y))}

• Given m samples of X and Y , covariance can be estimated as

1

m− 1

m
X

i=1

(xi − µX)(yi − µY) ,

where µX =
Pm

i=1
xi and µY =

Pm

i=1
yi.

• Note: Cov(X, X) = V ar(X).

November 22, 2005 17 COMP-652 Lecture 20

Examples

0 5 10

0

5

10

Cov=7.6022

0 5 10

0

5

10

Cov=−3.8196

0 5 10

0

5

10

Cov=−0.12338

0 5 10

0

5

10

Cov=0.00016383

November 22, 2005 18 COMP-652 Lecture 20

Reconstruction error

• Let our line be represented as b + αv for b,v ∈ ℜn, α ∈ ℜ.

For later convenience, assume ‖v‖ = 1.

• Each instance xi is assigned a point on the line x̂i = b + αiv.

• The (squared Euclidean) reconstruction error for instance i is

‖xi − x̂i‖
2 =

n
X

j=1

(xi(j)− x̂i(j))
2

• We want to choose b, v, and the αi to minimize the total

reconstruction error over all data points:

R =
m

X

i=1

‖xi − x̂i‖
2

November 22, 2005 19 COMP-652 Lecture 20

A constrained optimization problem!

min ‖xi − (b + αiv)‖2

w.r.t. b,v, αi, i = 1, . . . n

s.t. ‖v‖2 = 1

We can write down the Lagrangian and try to solve directly, but this

gets a bit difficult... (see homework 7)

November 22, 2005 20 COMP-652 Lecture 20

Minimizing reconstruction error: b and the αi

• Suppose we fix v. Now we have an unconstrained optimization

problem!
• By taking the gradient of the reconstruction error and setting it

to 0 we get that an optimal choice for b is

b =
1

m

m
X

i=1

xi ,

• From this, we get αi = v · (xi − b)

• By substituting, we get: x̂i = b + v · (xi − b).

• Intuitively:

– The line goes through the centroid of the data.

– Instances are projected orthogonally on the line to get the

associated point.

November 22, 2005 21 COMP-652 Lecture 20

Example data

November 22, 2005 22 COMP-652 Lecture 20

Example with v ∝ (1, 0.3)

November 22, 2005 23 COMP-652 Lecture 20

Example with v ∝ (1,−0.3)

November 22, 2005 24 COMP-652 Lecture 20

Minimizing reconstruction error: the scatter matrix

• Substituting back into the formula for the reconstruction error,

we get that v should maximize

v
T
Sv ,

where S is an n× n matrix with

S(k, l) =
m

X

i=1

(xi(k)− b(k))(xi(l)− b(l))

• Note that S(k, l) is proportional to the estimated covariance

between the kth and lth dimension in the data.

• S is called the scatter matrix .

November 22, 2005 25 COMP-652 Lecture 20

Optimal choice of v

• Recall: an eigenvector u of a matrix A satisfies Au = λu,

where λ ∈ ℜ is the eigenvalue .

• Fact: the scatter matrix, S, has n non-negative eigenvalues and

n orthogonal eigenvectors.

• The v that maximizes v
T Sv is the eigenvector of S with the

largest eigenvalue (homework 7)

November 22, 2005 26 COMP-652 Lecture 20

Example with optimal line: b = (0.54, 0.52), v ∝ (1, 0.45)

November 22, 2005 27 COMP-652 Lecture 20

Remarks

• The line b + αv is the first principal component .

• The variance of the data along the line b + αv is as large as

along any other line.

• b, v, and the αi can be computed easily in polynomial time.

November 22, 2005 28 COMP-652 Lecture 20

Reduction to d dimensions

• More generally, we can create a d-dimensional representation

of our data by projecting the instances onto a hyperplane

bfb + α1
v1 + . . . + αd

vd.

• If we assume the vj are of unit length and orthogonal, then the

optimal choices are:

– b is the mean of the data (as before)

– The vj are orthogonal eigenvectors of S corresponding to its

d largest eigenvalues.

– Each instance is projected orthogonally on the hyperplane.

November 22, 2005 29 COMP-652 Lecture 20

Remarks

• b, the eigenvalues, the vj , and the projections of the instances

can all be computing in polynomial time.

• The magnitude of the jth-largest eigenvalue, λj , tells you how

much variability in the data is captured by the jth principal

component

• So you have feedback on how to choose d!

• When the eigenvalues are sorted in decreasing order, the

proportion of the variance captured by the first d components is:

λ1 + · · ·+ λd

λ1 + · · ·+ λd + λd+1 + · · ·+ λn

• So if a “big” drop occurs in the eigenvalues at some point, that

suggests a good dimension cutoff

November 22, 2005 30 COMP-652 Lecture 20

Example: λ1 = 0.0938, λ2 = 0.0007

November 22, 2005 31 COMP-652 Lecture 20

Example: λ1 = 0.1260, λ2 = 0.0054

November 22, 2005 32 COMP-652 Lecture 20

Example: λ1 = 0.0884, λ2 = 0.0725

November 22, 2005 33 COMP-652 Lecture 20

Example: λ1 = 0.0881, λ2 = 0.0769

November 22, 2005 34 COMP-652 Lecture 20

More remarks

• Outliers have a big effect on the covariance matrix, so they can

affect the eignevectors quite a bit

• A simple examination of the pairwise distances between

instances can help discard points that are very far away (for the

purpose of PCA)

• If the variances in the original dimensions vary considerably,

they can “muddle” the true correlations. There are two solutions:

– work with the correlation of the original data, instead of

covariance matrix

– normalize the input dimensions individually before PCA

• In certain cases, the eigenvectors are meaningful; e.g. in vision,

they can be displayed as images (“eigenfaces”)

November 22, 2005 35 COMP-652 Lecture 20

Uses of PCA

• Pre-processing for a supervised learning algorithm, e.g. for

image data, robotic sensor data

• Used with great success in image and speech processing

• Visualization

• Exploratory data analysis

• Removing the linear component of a signal (before fancier

non-linear models are applied)

November 22, 2005 36 COMP-652 Lecture 20

