
Machine Learning - Assignment 7

Posted Saturday November 24, 2007
Due Monday december 3, 2007

1. [20 points]The theoretical details of PCA

In class we discussed in detail the case of PCA for finding one component, and we summarized
what happens ifk components are needed. Now, we analyze this in more detail. Suppose that
the linear projection onto ak-dimensional subspace that maximizes the variance accounted for is
defined by thek largest eigenvalues of the scatter matrix. We need to show that this is true fork+1
as well (then it will be true by induction). To do this, consider the variance and set the derivative of
the variance wrt the new vectorvk+1 to be 0. This should be done under the constraints thatvk+1

be orthogonal tov1 . . . vk, and that it also be normalized to unit length. Use Lagrange multipliers
to enforce these constraints. Then, use the orthonormality properties of the vectors to show that
vk+1 must be an eigenvector of the scatter matrix. Finally, show that variance is maximized ifvk+1

corresponds toλk+1.

2. [20 points]Understanding correlations

In this problem, we will show that the independence of two random variables is a sufficient but not
necessary condition for the correlation matrix to be diagonal.

(a) [10 points] Consider two random variablesX andZ which are independent, i.e.p(X, Z) =
p(X)p(Z). Show that any off-diagonal elements in the correlation matrix must be0.

(b) [10 points] Now suppose thatZ = X2, andXŨnif [−1. + 1]. Write downp(Z|X). Show
that all off-diagonal elements in the correlation matrix must be0, by using the fact that
p(X, Z) = p(Z|X)p(X)

3. [60 points]Playing with PCA

(a) [5 points] Generate 200 examples from a Gaussian with mean (5, 20) and covariance matrix:[
10 1
−1 5

]

Plot the data you generated.

(b) [5 points] Make a prediction about what directions the principal components should have,
based on the class notes.

(c) [10 points] Run PCA on this data and describe what happens.

(d) [5 points] Now subtract the mean from all the data points and run PCA. Describe again what
happens. Is there any difference in the principal components found? Explain the result
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(e) [5 points] Now subtract the mean from all the data points and divide the result by the standard
deviation (so as to normalize the data). Run PCA again and explain what happens to the
result.

(f) [5 points] Multiply the second coordinate of every point in the data set by 1000 and run PCA
again. What happens to the principle components, and why?

(g) [5 points] Comment on the robustness of PCA wrt the scaling of the data, and on what needs
to be done to make sure that good results are obtained.

(h) [25 points] Generate a new data set from the functiony = x3 − x2 + x + 1 with x in the
range of -1 to 1. Samplex uniformly randomly, computey then add normal noise with mean
0 and standard deviation1 to y. Generate 100 data points in this way. Run PCA on this
two-dimensional data and plot the results. Implement kernel PCA on this data, with a kernel
of your choice. Run kernel PCA and report the eigenvectors found. Generate another 10
points and project them onto the principal components in both scenarios, then measure the
reconstruction error. Briefly explain what you observe.
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