
COMP 652: Machine Learning - Assignment 1

Posted Wednesday, September 9, 2009
Due Wednesday, September 16, 2009

1. Linear and polynomial regression [65 points]
For this exercise, you will experiment in Matlab with linear and polynomial regression on a given
data set. The inputs are in the file hw1x.dat and the desired outputs in hw1y.dat.

(a) [5 points] Load the data into memory and plot it (using the load and plot functions; use the
help function if you do not know how to call them).

(b) [5 points] Add a column vector of 1s to the inputs, then use the linear regression formula
discussed in class to obtain a weight vector w. Plot both the linear regression line and the
data on the same graph. (Note: matrix formulas translate almost verbatim in Matlab)

(c) [5 points] Write a Matlab function that will evaluate the training error of the resulting fit, and
report what this error is.

(d) [5 points] Write a Matlab function called PolyRegress(x,y,d) which adds the features x2, x3,
. . .xd to the inputs and performs polynomial regression.

(e) [5 points] Use your function to get a quadratic fit of the data. Plot the data and the fit. Report
the training error. Is this a better fit?

(f) [5 points] Repeat the previous exercise for a cubic fit.

(g) [5 points] Suppose that the data were sorted in increasing value of the target variable y, and
you simply partitioned it by putting the first m/k examples in the first fold, the next ones in
the second fold, etc. Explain what would happen if you tried to perform cross-validation with
these folds.

(h) [10 points] Write a procedure that performs five-fold cross-validation on your data. Use it
to determine the best degree for polynomial regression. Show the data that supports your
conclusion, and explain how you have come to this conclusion. For the best fit, plot the data
and the polynomial obtained.

(i) [10 points] Change the Matlab code such that you normalize the input data in each column
by the maximum the maximum value in that column. What is the best degree for polynomial
regression now? Justify your answer.

(j) [10 points] As you witnessed, polynomial regression often causes the features to get extreme
values, which may cause numerical problems. In such cases, it can be helpful to normalize
the features, e.g. by dividing the value of each feature xj by maxi xi,j , like you did in the
example above. Prove that this change results in a scaling of the output, but has no other
effect on the approximator.
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2. Weighted linear regression [25 points]
Sometimes we might want to do linear regression but weight the different training examples dif-
ferently. This is the case, for instance, if we believe that some examples are more important than
others, or that some examples are less prone to noise. In particular, suppose we want to minimize
the following error function:

J(w) =
m∑
i=1

ui(w
Txi − yi)2

(a) [5 points] Show that this can be re-written in matrix form as:

J(w) = (Xw − y)TU(Xw − y) (1)

Clearly state what U is.

(b) [5 points] Compute∇wJ(w). Set this to 0 and solve for the parameter vector w. You should
obtain a generalization of the formula we derived in class, with w as a function of X, y and
U. Check that for the case in which all weights are equal to 1, you get the same formula as
for linear regression.

(c) [10 points] Implement weighted linear regression for the data set used in question 1. Weight
all points equally, except the point with the largest input value. Gradually increase the weight
of this point. Describe what happens, and why.

(d) [5 points] Draw an example of a data set in which you would expect weighted linear re-
gression to work a lot better than the unweighted version. Explain why you chose this data
set.

3. [10 points] Error criterion for exponential noise
At the end of Lecture 2, we showed that one justification for minimizing the squared-error in a
regression problem is probabilistic: we obtain the hypothesis under which the data has maximum
likelihood – if we assume that the target values are generated by a hypothesis from the same class,
but perturbed by additive Gaussian noise. Now, suppose that the noise variables were not Gaussian
but rather exponentially distributed. Recall that the exponential distribution has a single parameter,
λ, and its density has the formula:

Pλ(t) =

{
λe−λt if t ≥ 0
0 if t < 0

Using a similar derivation to the one in class, show that under this assumption, the hypothesis that
maximizes the likelihood of the data is no longer the one that minimizes the squared error. Derive
the error criterion minimized in this case. Show your final result, as well as the derivation.

2


