
Lecture 21: Reinforcement Learning - Part III

� Recap of TD and Monte Carlo
� Eligibility traces
� Generalization and function approximation

1

�
-step TD predictions

Main idea: look farther into the future when you do a TD backup

TD (1-step) 2-step 3-step n-step Monte Carlo

2

Mathematics of
�

-step TD prediction
� Monte Carlo algorithms use the full return as a target:

����� �����
	�� ���������� ������� ���� � � 	 � �
� TD uses the approximate value function

��
to estimate the return after

the first step: ��� 	��� � �����
	�� ��! #"����
	%$
� But we could truncate the return after any number of steps, and use

��
as an approximation for the rest. E.g. 2-step return:

��� �&�� � �����
	�� ������'��� � ��! #"����'��$

� In general, an (-step return is:

���*) �� � �����
	+� ������'�,� �����-�) � 	 �����) �) ��. #"����) $

� Issue: what is a good (?

3

Some empirical evidence

Random walk task, 19 states
2001000

.25

. 3

.35

. 4

.45

. 5

.55

RMS error,
averaged over
first 10 episodes

0 0.2 0.4 0.6 0.8 1

α

1

2

35
8

15

30
60

100

15

8
5

.35

. 4

.45

. 5

.55

0 0.1 0.2 0.3

α

ON-LINE
n-STEP TD

1

2

3

4

68
15

30

60100

2001000

OFF-LINE
n-STEP TD

RMS error,
averaged over
first 10 episodes

4

Averaging
�

-step returns
� Idea: backup an average of (-step returns

E.g. Half of a 2-step and half of a 4-step return

1

2

1

2

� Since any (-step return reduces the error, any linear

combination of them will also reduce the error
� ��� �� $

is a particular way of averaging all the (-step backups

5

Forward view of
� � �	��

1−λ

(1−λ) λ

(1−λ) λ2

Σ = 1

TD(λ), λ-return

λT-t-1

�
-return:

��� � ���� ��$ �
)�� 	

�) � 	 �)���

where
�

is a parameter between 0 and 1

Backup using
�

-return:

��. " ��$�� ��! #"�� $�� � �*� �� � ��. " ��$��

This weighs each (-step backup by a

weight
�) � 	

, depending on the time

since the state was visited.

6

Relationship to TD and Monte Carlo

Suppose we have a trial-base task, and the trial ends at
�

. The�
-return can be re-written as:

� �� � � � � $ ���
� � 	

)�� 	
�) � 	 �)� � � ��� � � 	 ���

The first term shows truncated returns until termination, the last one

shows the whole return for the trial
� If

� � �
, we get

� �� � ���
- Monte Carlo!

� If
� � �

, we get
� �� � � � 	 ��

- Temporal difference! (we will call

it TD(0) from now on)�
provides a way of interpolating between TD(0) and Monte Carlo!

7

Eligibility traces

� The previous algorithm is helpful for understanding but is not

convenient to implement directly
� For a convenient implementation, we use an extra variable for

each state, �
� #"�$

, called the eligibility trace, which keeps track

of how long ago the state was visited
� Update rule for the accumulating eligibility trace:

�
�% "�$ � �

�
� � 	 #"�$ if

"��� "��
 �
�
� � 	 #"�$�� �

if
" � "��

accumulating eligibility trace

times of visits to a state

8

On-line tabular
� � �	��

1. Initialize
�. "-$

arbitrarily and �
 #"�$ � �

, for all states
"

2. Pick a start state
"

3. Repeat for every time step:

(a) Choose action � based on policy � and the current state
"

(b) Take action � , observe immediate reward
�

and new state
"��

(c) Compute the TD error:
� � � � �� "�� $ � � "�$

(d) Mark the current state as visited: �
 "�$ �

�
 #"�$'� �

(e) For all states
"
, update the value function and eligibility trace:

�. "-$ � �! #"�$'� � �
�
 "-$

�
 "-$ � �

�
 "-$

(f)
" � "��

9

What
� � �	��

does

δtet et
et

et

Time

st
st+1

st-1

st-2

st-3

� On every time step � , we compute the TD error:

� ��� �����
	�� ��! #"���� 	 $ � ��! #"�� $

� Shout
� �

backwards to past states
� The strength of your voice decreases with temporal distance by �

10

Relation of the on-line algorithm to TD(0) and Monte Carlo

� We can show (by algebraic manipulations) that the two

algorithms discussed so far are equivalent
� In the on-line algorithm, setting

� � �
gives us TD(0) (just like

before)
� Setting

� � �
gives us Monte Carlo, also as before - we call this

TD(1)

But this is a better implementation of Monte Carlo!

– Straightforward to apply to continuing tasks

– Works incrementally and on-line, instead of waiting until the

end of the episode

11

Typical empirical results

.25

. 3

.35

. 4

.45

. 5

.55

Average
RMSE

over First
10 Trials

0 0.2 0.4 0.6 0.8 1

α

λ=0

λ=.2

λ=.4

λ=.6λ=.8

λ=.9

λ=.95

λ=.95

λ=.975
λ=.99

λ=1

Online TD(λ)
on Random Walk

� Typically intermediate values of
�

converge the fastest
� A sharp decrease in performance happens at

�
very close to 1

� The algorithm converges in the limit, with probability 1, to

correct values, for any
�

12

Implementation issues

� A naive implementation would update all states (or state-action

pairs) on every time step
� But in practice, for most values of

and

�
, the eligibility traces

are very near zero for all states except those most recently

visited
� A clever implementation can keep track only of the states with

non-zero traces, which makes the algorithm a few times more

expensive than TD(0)
� When using function approximation, extra expense is even less.

13

Summary of eligibility traces

� Eligibility traces provide an efficient, incremental way to

combine temporal difference and Monte Carlo methods
� Like Monte Carlo methods, they are robust to lack of Markov

property (see, e.g. Loch and Singh, 1998)
� But preserve the advantage of TD in terms of bootstrapping,

incremental computation
� Can significantly speed up learning (many experiments indicate

intermediate
�

is consistently the best)
� But there is a cost in computation (now more than one state is

updated on every step)

14

Why function approximation?

� In general, state spaces are continuous or too large to represent

as a table
� If every state has a separate entry in the table, then every state

has to be visited at least a few times before having a good

approximation; in the limit every state should be visited infinitely

often, which is not feasible

Main idea: Use a function approximator to generalize from the seen

states to unseen ones

This is what supervised learning algorithms do too!

15

Adapt supervised learning algorithms

� A training example has an input and a target output
� The error is measured based on the difference between the

actual output and the desired (target) output

Training Info: Desired (target) Output

Supervised
Learning

Inputs Outputs

16

Value-based methods

We will use a function approximator to represent the value function
� The input is a description of the state (or state-action pair)
� The output is the predicted value of the state (or state-action

pair)
� The target output comes from the RL update rule

E.g. for TD(0), the target would be
� ���
	�� ��! #"����
	%$

17

What kind of function approximator can we use?

In principle anything we want
� A table where several states are mapped to the same location -

state aggregation
� Gradient-based methods:

– Linear approximators

– Artificial neural networks

– Radial Basis Functions

– SVMs?
� Memory-based methods:

– Nearest-neighbor

– Locally weighted regression
� Decision trees

18

0.001in=0.401920.001in0.1in=0.401920.1in

Special requirements for the function approximator:
� Fast, incremental learning (so we can learn during the

interaction)
� Ability to handle non-stationary target functions

19

Gradient Descent Methods

Consider the policy evaluation problem: learning
� �

for a given

policy �

The approximate value function
�! " � $ � �
 �� ��� � $

, where
� �

are the

attributes (features) describing
" �

, and
�

is a parameter vector

E.g.
�

could be the connection weights in a neural network

We will update
�

based on the errors computed by the

reinforcement learning algorithm

20

Performance measure

� We want to find a parameter vector
�

that minimizes the mean

squared error:

� ��� � $ � �
�
���	�

. "-$ #� � "�$ � �! #"�$ $ �

What should

be?
� In our case

is the on-policy distribution: distribution of

states created when the agent acts according to �

21

Gradient descent update

Works like in the supervised learning case:

� � � � ������ ��� �� $
� � � ��� �

�
�����

 #"�$' � � "-$ � � "-$ $ �

� � � �
���	�

. "-$ #� � "�$ � �! #"�$ $�� � "-$

To do this incrementally, we use the sample gradient:

� � � � � � � #"�$ � �. "-$ $�� �! #"�$

The sample gradient is an unbiased estimate of the true gradient.

The rule would converge to a local minimum of the error function, if�
is decreased appropriately over time

22

Using TD targets

Instead of
� �

, we will use the targets that come from the
��� ���$

algorithm:
� � � � � � � "�$ � �! #"�$ $�� � "-$

If we use Monte Carlo, then �
� � � �

is an unbiased estimate of the

true value function, and the algorithm still converges to a local

minimum, provided
�

is decreased appropriately

If �
��� � ��

with
��� �

, �
�

is not an unbiased estimate, and we

cannot say anything about the convergence in general

But the algorithm is well defined, and used in practice

23

On-line gradient descent
� � �	�

In addition to the weight vector
�
, we will have an eligibility trace

vector � , with one eligibility for every weight

1. Initialize the weight vector
�

arbitrarily, and � = 0.

2. Pick a start state
"

3. Repeat for every time step � :
(a) Choose action � based on policy � and the current state

"

(b) Take action � , observe immediate reward
�

and new state
"��

(c) Compute the TD error:
� � � � �� "�� $ � � "�$

(d) Compute the eligibility of every weight vector to be updated:

�
� �

�
� � �! #"�$

(e) Update the weight vector:
� � � � � �

�

(f)
" � "��

24

Linear methods

Each state represented by feature vector
� "-$�� � 	- "-$

�����
�
�
 #"�$ $ �

The value function is a linear combination of the features:

� "�$ � � � � "-$��
�

� � 	
� � � � "-$

So the gradient is very simple:
� �! #"�$�� � #"�$

The error surface is quadratic with a single global minimum

Tsitsiklis and Van Roy: Linear gradient-descent
��� �� $

converges

w.p.1 to a parameter vector
�

� in the “vicinity” of the best parameter

vector
���

:
� ��� �

�
$�� ��� �

��� � ��� � � $

25

Coarse coding

Main idea: we want linear function approximators, but with lots of

features, so they can represent complex functions

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

26

Discretizing the state space

Suppose we have a continuous state space with two continuous

variable (e.g. like in the Mountain-Car task)

The simplest tile coding approximator would be just a grid

discretizing the state space:
� The features are all 0 except for the cell holding the current

state, which is 1 (like a 1-of-n encoding)
� All states in the same cell have the same value (given by the

weight of the cell)

27

Pros and cons of discretizations

Pros:
� Easy to compute the value function of a state
� Easy to update as well (more like the table lookup case).

Cons:
� To get good precision, we need a very fine grid - going back to

the table lookup case?
� States in the vicinity of a separation line could have radically

different values (approximation is discontinuous)

28

Tile coding (continued)

Main idea: Overlap several tilings!
tiling #1

tiling #2

Shape of tiles ⇒ Generalization

#Tilings ⇒ Resolution of final approximation

2D state
space

29

Characteristics of tile coding

� Each tile is a binary feature
� The number of features that are activated at any time is

constant, equal to the number of tilings
� It is easy to compute the indices of the features activated, and

easy to compute the weighted sum
� The overall discretization is very fine, and at the same time the

discontinuities are smoothed out
� The shape of the tiles reflects prior domain knowledge

Cf. CMAC (Albus, 1971)

30

Summary of function approximation

� It is necessary for practical purposes!!!
� Proving convergence is much harder than in the tabular case
� Linear approximators tend to e well-behaved (and work well in

practice!)
� Recent results indicate that convergence can be ensured if the

policy changes slowly over time
� But this means slower learning...

31

