
Lecture 21: Reinforcement Learning - Part III

� Recap of TD and Monte Carlo
� Eligibility traces
� Generalization and function approximation
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�
-step TD predictions

Main idea: look farther into the future when you do a TD backup

TD (1-step) 2-step 3-step n-step Monte Carlo
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Mathematics of
�

-step TD prediction
� Monte Carlo algorithms use the full return as a target:

����� �����
	�� ���������� ������� ���� � � 	 � �
� TD uses the approximate value function

��
to estimate the return after

the first step: ��� 	��� � �����
	��  ��! #"����
	%$
� But we could truncate the return after any number of steps, and use

��
as an approximation for the rest. E.g. 2-step return:

��� �&�� � �����
	�� ������'���  � ��! #"����'��$

� In general, an ( -step return is:

���*) �� � �����
	+� ������'�,� �����-�  ) � 	 ����� ) �  ) ��. #"���� ) $

� Issue: what is a good ( ?
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Some empirical evidence

Random walk task, 19 states
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Averaging
�

-step returns
� Idea: backup an average of ( -step returns

E.g. Half of a 2-step and half of a 4-step return

1

2

1

2

� Since any ( -step return reduces the error, any linear

combination of them will also reduce the error
� ���  �� $

is a particular way of averaging all the ( -step backups
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Forward view of
� � �	��


1−λ

(1−λ) λ

(1−λ) λ2

Σ = 1

TD(λ), λ-return

λT-t-1

�
-return:

��� �  ���� ��$ �
)�� 	

� ) � 	 � )���

where
�

is a parameter between 0 and 1

Backup using
�

-return:

��. " ��$�� ��! #"�� $�� � �*� �� � ��. " ��$��

This weighs each ( -step backup by a

weight
� ) � 	

, depending on the time

since the state was visited.
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Relationship to TD and Monte Carlo

Suppose we have a trial-base task, and the trial ends at
�

. The�
-return can be re-written as:

� �� �  � � � $ ���
� � 	

)�� 	
� ) � 	 � )� � � ��� � � 	 ���

The first term shows truncated returns until termination, the last one

shows the whole return for the trial
� If

� � �
, we get

� �� � ���
- Monte Carlo!

� If
� � �

, we get
� �� � � � 	 ��

- Temporal difference! (we will call

it TD(0) from now on)�
provides a way of interpolating between TD(0) and Monte Carlo!
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Eligibility traces

� The previous algorithm is helpful for understanding but is not

convenient to implement directly
� For a convenient implementation, we use an extra variable for

each state, �
�  #"�$

, called the eligibility trace, which keeps track

of how long ago the state was visited
� Update rule for the accumulating eligibility trace:

�
�% "�$ �  �

�
� � 	  #"�$ if

"��� "��
 �
�
� � 	  #"�$�� �

if
" � "��

accumulating eligibility trace

times of visits to a state
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On-line tabular
� � �	��


1. Initialize
�. "-$

arbitrarily and �
 #"�$ � �

, for all states
"

2. Pick a start state
"

3. Repeat for every time step:

(a) Choose action � based on policy � and the current state
"

(b) Take action � , observe immediate reward
�

and new state
"��

(c) Compute the TD error:
� � � � ��  "�� $ � �  "�$

(d) Mark the current state as visited: �
 "�$ �

�
 #"�$'� �

(e) For all states
"
, update the value function and eligibility trace:

�. "-$ � �! #"�$'� � �
�
 "-$

�
 "-$ �  �

�
 "-$

(f)
" � "��
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What
� � �	��


does

δtet et
et

et

Time

st
st+1

st-1

st-2

st-3

� On every time step � , we compute the TD error:

� ��� �����
	��  ��! #"���� 	 $ � ��! #"�� $

� Shout
� �

backwards to past states
� The strength of your voice decreases with temporal distance by �
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Relation of the on-line algorithm to TD(0) and Monte Carlo

� We can show (by algebraic manipulations) that the two

algorithms discussed so far are equivalent
� In the on-line algorithm, setting

� � �
gives us TD(0) (just like

before)
� Setting

� � �
gives us Monte Carlo, also as before - we call this

TD(1)

But this is a better implementation of Monte Carlo!

– Straightforward to apply to continuing tasks

– Works incrementally and on-line, instead of waiting until the

end of the episode
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Typical empirical results

.25

. 3

.35

. 4

.45

. 5

.55

Average
RMSE

over First
10 Trials

0 0.2 0.4 0.6 0.8 1

α

λ=0

λ=.2

λ=.4

λ=.6λ=.8

λ=.9

λ=.95

λ=.95

λ=.975
λ=.99

λ=1

Online TD(λ)
on Random Walk

� Typically intermediate values of
�

converge the fastest
� A sharp decrease in performance happens at

�
very close to 1

� The algorithm converges in the limit, with probability 1, to

correct values, for any
�
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Implementation issues

� A naive implementation would update all states (or state-action

pairs) on every time step
� But in practice, for most values of


and

�
, the eligibility traces

are very near zero for all states except those most recently

visited
� A clever implementation can keep track only of the states with

non-zero traces, which makes the algorithm a few times more

expensive than TD(0)
� When using function approximation, extra expense is even less.
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Summary of eligibility traces

� Eligibility traces provide an efficient, incremental way to

combine temporal difference and Monte Carlo methods
� Like Monte Carlo methods, they are robust to lack of Markov

property (see, e.g. Loch and Singh, 1998)
� But preserve the advantage of TD in terms of bootstrapping,

incremental computation
� Can significantly speed up learning (many experiments indicate

intermediate
�

is consistently the best)
� But there is a cost in computation (now more than one state is

updated on every step)

14



Why function approximation?

� In general, state spaces are continuous or too large to represent

as a table
� If every state has a separate entry in the table, then every state

has to be visited at least a few times before having a good

approximation; in the limit every state should be visited infinitely

often, which is not feasible

Main idea: Use a function approximator to generalize from the seen

states to unseen ones

This is what supervised learning algorithms do too!
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Adapt supervised learning algorithms

� A training example has an input and a target output
� The error is measured based on the difference between the

actual output and the desired (target) output

Training Info: Desired (target) Output

Supervised
Learning

Inputs Outputs
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Value-based methods

We will use a function approximator to represent the value function
� The input is a description of the state (or state-action pair)
� The output is the predicted value of the state (or state-action

pair)
� The target output comes from the RL update rule

E.g. for TD(0), the target would be
� ���
	�� ��! #"����
	%$
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What kind of function approximator can we use?

In principle anything we want
� A table where several states are mapped to the same location -

state aggregation
� Gradient-based methods:

– Linear approximators

– Artificial neural networks

– Radial Basis Functions

– SVMs?
� Memory-based methods:

– Nearest-neighbor

– Locally weighted regression
� Decision trees
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0.001in=0.401920.001in0.1in=0.401920.1in

Special requirements for the function approximator:
� Fast, incremental learning (so we can learn during the

interaction)
� Ability to handle non-stationary target functions

19

Gradient Descent Methods

Consider the policy evaluation problem: learning
� �

for a given

policy �

The approximate value function
�! " � $ � �
 �� ��� � $

, where
� �

are the

attributes (features) describing
" �

, and
�

is a parameter vector

E.g.
�

could be the connection weights in a neural network

We will update
�

based on the errors computed by the

reinforcement learning algorithm

20



Performance measure

� We want to find a parameter vector
�

that minimizes the mean

squared error:

� ���  � $ � �
�
���	�


. "-$  #� �  "�$ � �! #"�$ $ �

What should



be?
� In our case



is the on-policy distribution: distribution of

states created when the agent acts according to �
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Gradient descent update

Works like in the supervised learning case:

� � � � ������ ���  �� $
� � � ���  �

�
�����


  #"�$' � �  "-$ � �  "-$ $ �

� � � �
���	�


. "-$  #� �  "�$ � �! #"�$ $��  �  "-$

To do this incrementally, we use the sample gradient:

� � � � �  � �  #"�$ � �. "-$ $��  �! #"�$

The sample gradient is an unbiased estimate of the true gradient.

The rule would converge to a local minimum of the error function, if�
is decreased appropriately over time
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Using TD targets

Instead of
� �

, we will use the targets that come from the
���  ���$

algorithm:
� � � � �  � �  "�$ � �! #"�$ $��  �  "-$

If we use Monte Carlo, then �
� � � �

is an unbiased estimate of the

true value function, and the algorithm still converges to a local

minimum, provided
�

is decreased appropriately

If �
��� � ��

with
��� �

, �
�

is not an unbiased estimate, and we

cannot say anything about the convergence in general

But the algorithm is well defined, and used in practice
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On-line gradient descent
� � �	� 


In addition to the weight vector
�
, we will have an eligibility trace

vector � , with one eligibility for every weight

1. Initialize the weight vector
�

arbitrarily, and � = 0.

2. Pick a start state
"

3. Repeat for every time step � :
(a) Choose action � based on policy � and the current state

"

(b) Take action � , observe immediate reward
�

and new state
"��

(c) Compute the TD error:
� � � � ��  "�� $ � �  "�$

(d) Compute the eligibility of every weight vector to be updated:

�
�  �

�
� �  �! #"�$

(e) Update the weight vector:
� � � � � �

�

(f)
" � "��
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Linear methods

Each state represented by feature vector
�  "-$��  � 	- "-$

�����
�
�
 #"�$ $ �

The value function is a linear combination of the features:

�  "�$ � � � �  "-$��
�

� � 	
� � � �  "-$

So the gradient is very simple:
�  �! #"�$�� �  #"�$

The error surface is quadratic with a single global minimum

Tsitsiklis and Van Roy: Linear gradient-descent
���  �� $

converges

w.p.1 to a parameter vector
�

� in the “vicinity” of the best parameter

vector
���

:
� ���  �

�
$�� ���  �

���  � ���  � � $
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Coarse coding

Main idea: we want linear function approximators, but with lots of

features, so they can represent complex functions

a) Narrow generalization b) Broad generalization c) Asymmetric generalization
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Discretizing the state space

Suppose we have a continuous state space with two continuous

variable (e.g. like in the Mountain-Car task)

The simplest tile coding approximator would be just a grid

discretizing the state space:
� The features are all 0 except for the cell holding the current

state, which is 1 (like a 1-of-n encoding)
� All states in the same cell have the same value (given by the

weight of the cell)
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Pros and cons of discretizations

Pros:
� Easy to compute the value function of a state
� Easy to update as well (more like the table lookup case).

Cons:
� To get good precision, we need a very fine grid - going back to

the table lookup case?
� States in the vicinity of a separation line could have radically

different values (approximation is discontinuous)
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Tile coding (continued)

Main idea: Overlap several tilings!
tiling #1

tiling #2

Shape of tiles ⇒ Generalization

#Tilings ⇒ Resolution of final approximation

2D state
space
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Characteristics of tile coding

� Each tile is a binary feature
� The number of features that are activated at any time is

constant, equal to the number of tilings
� It is easy to compute the indices of the features activated, and

easy to compute the weighted sum
� The overall discretization is very fine, and at the same time the

discontinuities are smoothed out
� The shape of the tiles reflects prior domain knowledge

Cf. CMAC (Albus, 1971)
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Summary of function approximation

� It is necessary for practical purposes!!!
� Proving convergence is much harder than in the tabular case
� Linear approximators tend to e well-behaved (and work well in

practice!)
� Recent results indicate that convergence can be ensured if the

policy changes slowly over time
� But this means slower learning...
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