Lecture 15: Ensemble classifiers - Boosting

e |dea of boosting
e AdaBoost algorithm (Freund and Schapire)
e Why does boosting work?
e Margin of a classifier as a measure of true error
Lecture based on material provided by Rob Schapire and Tommi

Jaakkola

Recall from last time: Bagging

e Combines the predictions of several classifiers in order to
reduce variance

® Repeatedly
1. Sample with replacement data from the training set
2. Train a new classifier on the sample data

e The predictions of the classifiers are combined by majority

voting




Main idea of boosting
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Jomponent classifiers should concentrate more on difficult examples
e Examine the training set
e Derive some rough rule of thumb
e Re-weight the examples of the training set, concentrating on
“hard” cases for the previous rule
® Derive a second rule of thumb
e And so on... (repeat this T’ times)
e Combine the rules of thumb into a single, accurate rule
Questions:
e How do we re-weight the examples?

e How do we combine the rules into a single classifier?

Weak learners

e Assume we have some “weak” binary classifiers (e.g., decision
stumps: z; > t)
e “Weak” means errorp(h) < 1/2 — ~ (i.e., the true error is

better than random).
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Boosting classifier
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AdaBoost (Freund & Schapire, 1995)

. Input N training examples {(z1,y1),...(z~,yn~)}, where z;
are the attributes and y; is the desired class label

2. Let D1(z;) = % (we start with a uniform distribution)

3. Repeat 7' times:

(@) Construct D¢41 from Dy as follows:

1 Bt, ifhi(zi) =y

Dt—i—l(xi) = —D; (:Bz) X where
Zt 1,  otherwise

6, = errorp, (ht)

~ 1—errorp,(h:t)

and Z; is a normalization factor (set such that the

probabilities D¢41(x;) sum to 1).
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(b) Train a new hypothesis h:41 on distribution D;41

4. Construct the final hypothesis:

1= (S e = 5

Empirical comparison: Boosted stumps vs. C4.5
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Why does boosting work?

e \Weak learners have high bias
e By combining them, we get more expressive classifiers

® Hence, boosting is a bias-reduction technique

e \What happens as we run boosting longer?

Intuitively, we get more and more complex hypotheses

A naive (but reasonable) analysis of generalization error

e Expect the training error to continue to drop (until it reaches 0)
e Expect the test error to increase as we get more voters, and h ¢

becomes too complex.

20 40 60 80 100
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Actual typical run of AdaBoost

Boosting C4.5 on the letter dataset:

20-

N

10 100 1000

e Test error does not increase even after 1000 runs! (more than 2

million decision nodes!)

e Test error continues to drop even after training error reaches 0!

These are consistent results through many sets of experiments!
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Classification margin

e The training error does not tell the whole story. We also need to
think about the classification confidence
e Consider the following two classifiers, each of which have 0

error. Which one would you prefer?

Classifier 1

Classifier 2
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Definition of margin

e Boosting constructs hypotheses of the form

hy(z) = sign(f(z))

data points on each side.

generalization error

variance

The classification of an example is correct if sign(f(z)) = y
The margin is defined as: margin; (z,y) =y - f(x)
The margin tells us how close the decision boundary is to the

A higher margin on the training set should yield a lower

Intuitively, increasing the margin is similar to lowering the
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Effect of boosting on the margin

1.0-
0.5-

10 100 1000

e Between rounds 5 and 10 there is no training error reduction

e But there is a significant shift in margin distribution!

e There is a proof that boosting increases the margin
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Bagging vs. Boosting
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Parallel of bagging and boosting

e Bagging is typically faster, but may get a less error reduction
(not by much)

e Bagging works well with “reasonable” classifiers

e Boosting works with very simple classifiers
E.g., Boostexter - text classification using decision stumps
based on single words
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Summary

Errors in classification are either systematic (bias) or due to the
particular data set (variance)

Different algorithms make different trade-offs.

Ensemble methods work by reducing either bias or variance (or
both)

Bagging is a variance-reduction technique

Main idea is to sample the data repeatedly, train several
classifiers and average their predictions.

Boosting works by focusing on harder examples, and giving a
weighted vote to the hypotheses.

Boosting works by reducing bias and increasing classification

margin.
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