Lecture 12: Instance-Based Learning

e k-Nearest Neighbor
e Radial Basis Functions
e | ocally weighted regression

e Case-based reasoning

Instance-Based Learning

e Key idea: just store all training examples (z;, f(x;))

e \When a query is made, compute the value of the new instance
based on the values of the closest points

e There are different ways of evaluating distance, and different

ways of computing the resulting value.




Nearest-neighbor

Given query instance z, first locate nearest training example x,,

then estimate f(z4) < f(n)

k-Nearest neighbor:
e Take vote among its k& nearest neighbors (if discrete-valued
target function)
e Take mean of f values of k nearest neighbors (if real-valued)

fzq) Zi:lkf(xi)

Decision space: Voronoi Diagram
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When To Consider Nearest Neighbor

Instances map to points in &K
Less than 20 attributes per instance

Lots of training data

Advantages:

Training is very fast
Learn complex target functions

Don't lose information

Disadvantages:

Slow at query time

Easily fooled by irrelevant attributes

Behavior in the Limit

Consider p(z) defines probability that instance z will be labeled
1 (positive) versus 0 (negative).

Nearest neighbor:

As number of training examples — oo, approaches Gibbs
Algorithm: with probability p(z) predict 1, else 0

k-Nearest neighbor:

As number of training examples — oo and k gets large,
approaches Bayes optimal: if p(z) > .5 then predict 1, else 0
Note Gibbs has at most twice the expected error of Bayes

optimal




Distance-Weighted kNN

We might want to weight nearer neighbors more heavily:

; Zf:l wi f(z:)
f(an) — Zle w;

where
1

d(qu, C172')2

and d(z4, ;) is distance between z, and z;

w; =

Note now it makes sense to use all training examples instead of
just k (Shepard’s method)

Irrelevant attributes

Imagine instances described by 20 attributes, but only 2 are

relevant to target function

What happens with the distance metric?

Curse of dimensionality: nearest neighbor is easily mislead

when high-dimensional X

One approach (Moore & Lee, 1994):

— “Stretch” 7th axis by weight z;, where 21, ..., z, chosen to
minimize prediction error

— Use cross-validation to automatically choose weights
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Locally Weighted Regression

e kNN forms local approximation to f for each query point z,
e \Why not form an explicit approximation f(x) for region
surrounding 4
— Fit linear function to k& nearest neighbors
— Fit quadratic, ...
— Produces “piecewise approximation” to f

e \ery popular for some applications (e.g., robotics)

Error functions

e Squared error over k nearest neighbors

> (f(z) - f(z))’

z€ k nearest nbrs of x4

FE1 (xq) =

DO | =

e Distance-weighted squared error over all neighbors

1

Ea(zq) =5 ) (f(z) - f(2))* K (d(zq, )

e Other schemes are possible too
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Radial Basis Function (RBF) Networks

Many parts of the brain have neurons which are “locally tuned”
to respond only if the input is within a certain range

E.g., neurons in the auditory part of the brain are tuned to
respond to different frequencies

But sigmoid neurons do not have this characteristic!

Main idea: have Gaussian fields around known data points

Like a nearest-neighbor, but creates an explicit representation of

the function, ahead of time.
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Structure of an RBF Network

There are a number of hidden units of the form:

[Ix — pall

2
202-

24(x) = exp(—

l.e. every unit is a Gaussian of mean p; and standard deviation
oi, which will get “activated” if the input vector x is close to the
mean p;

The outputs are just linear combinations of the hidden units:
Yj = wo + Zwizi(x)
i

Other choices of z; are possible besides the Gaussian

12




Training RBF networks

We want to find good values for the weights w;, the centers p;
and the widths o;

Main idea: gradient descent!

We can compute the derivative of the error function with respect
to each parameter and get a learning rule that way

The performance of this procedure is similar to that of sigmoid
multi-layered networks. But one would hope for a faster learning
process...

Idea: Train the hidden units first, then it will be easy to

determine weights for them
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Training RBF Networks (2)

Heuristics for determining means: choose randomly a number
of training examples; use clustering

Heuristic to determine widths: choose the distance to the
closest other unit as a width

These ensure fast training, but generalization performance is

worse
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Case-Based Reasoning

e We can apply instance-based learning even when X # R", we

just need a different “distance” metric
e Case-Based Reasoning is instance-based learning applied to
instances with symbolic logic descriptions, e.g.
((user-conpl ai nt error53-on-shut down)
(cpu- nodel Power PC)
(operati ng-system W ndows)
(net wor k- connecti on PCl A)
(menory 48neq)
(instal |l ed-applications Excel Netscape VirusScan)
(di sk 1gi Q)
(i kel y-cause ??7?))
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Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices
e Each training example: ( qualitative function, mechanical
structure)
e New query: desired function,
e Target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

16




Case-Based Reasoning in CADET

A stored case:  T—junction pipe

Structure: Function:
T T =temperature
Ql 1 Q =waterflow Q:]_ ¥
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A problem specification: Water faucet

Structure: Function:

o) q+*oc+
. QZ% > 4,
TC+
Tm
Th+
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Case-Based Reasoning in CADET

® Instances represented by rich structural descriptions
e Multiple cases retrieved (and combined) to form solution to new

problem
e Tight coupling between case retrieval and problem solving
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Lazy and Eager Learning

e Lazy: wait for query before generalizing
E.g. k-Nearest Neighbor, Case based reasoning

e Eager: generalize before seeing query
E.g. Radial basis function networks, Decision trees,
Backpropagation, Naive Bayes, ...

Does it matter?

e Eager learner must create global approximation

® Lazy learner can create many local approximations

e |f they use same hypothesis space H, a lazy learner can
represent more complex functions (e.g., consider H = linear

functions)
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