Machine Learning - Assignment 6

Posted Friday, November 15, 5:30pm Due Friday, November 21, 5:30pm

- 1. [30 points] (Adapted from Puterman). When we go out to dinner, we always like to park as close as possible to the restaurant. Assume the restaurant is situated on a very long street running east to west, which allows parking on one side only. The street is divided into one-carlength sections. We approach the restaurant from the east, starting D units away. The probability that a parking spot at distance s from the restaurant is unoccupied is p_s , independent of all other spots. Formulate this problem as a Markov Decision Process. Be sure to specify all the elements of your MDP!
- 2. [10 points] Sutton and Barto book, Section 3.7, Exercise 3.8
- 3. [15 points] Sutton and Barto book, Section 3.7, Exercises 3.10 and 3.11.
- 4. [10 points] Suppose that you have an MDP M_1 with discount factor $\gamma < 1$. An arbitrary policy π has value V_1^{π} in this MDP. Construct an MDP M_2 with discount factor 1, such that $V_2^{\pi} = V_1^{\pi}$.
- 5. [15 points] Suppose you observe the following 11 episodes generated by an unknown Markov process, where A and B are states and the numbers are rewards:
 - A,0,B,1
 - A,2
 - A,0,B,0,A,2
 - A,0,B,0,A,0,B,1
 - B,0,A,2
 - B,0,A,0,B,1
 - B,0,A,2
 - A,0,B,1
 - B,1

- B,1
- B,1
- (a) Give the values for states A and B that would be obtained by the Monte Carlo method discussed in class on this data set.
- (b) If you formed a model of the Markov process based on this data, what would it be? Explain your answer.
- (c) Give the values for states A and B that would be obtained by the batch TD(0) method. Show the way you computed your answer.
- 6. [10 points] As we discussed in class, state aggregation is a special case of generalizing function approximation, in which states are grouped together and one table entry (value estimate) is used for the whole group.
 - (a) Show that state aggregation is a special case of linear function approximation.
 - (b) Are tile codings (CMACs) creating just a state aggregation, or not? Explain the similarities and differences.
- 7. [10 points] Consider the value iteration update algorithm applied to action values:

$$Q_{n+1}(s, a) \leftarrow r_s^a + \gamma \sum_{s'} p_{ss'}^a \max_{a'} Q_n(s', a')$$

Let us write $Q_{n+1} = B(Q_n)$, where Q_n , Q_{n+1} are vectors and B is the Belamn update operator (defined through the equation above). Prove that, for any vectors Q, Q', we have

$$||B(Q) - B(Q')||_{\infty} \le \gamma ||Q - Q'||_{\infty}$$

where $||Q||_{\infty} = \max_{s,a} |Q(s,a)|$.