Lecture 16: Introduction to Reinforcement Learning

- The reinforcement learning problem
- Brief history and example applications
- Markov Decision Processes
- What to learn: policies and value functions

Control Learning

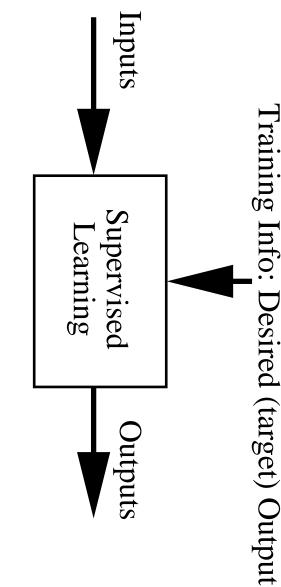
Consider learning to choose actions, e.g.,

- Robot learning to dock on battery charger
- Learning to choose actions to optimize factory output
- Learning to play Backgammon

Specific problem characteristics:

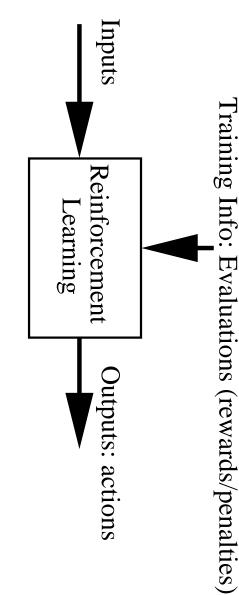
- Delayed reward
- Opportunity for active exploration
- There may not exist an adequate teacher!
- May need to learn multiple tasks using the same sensors/effectors

Supervised Learning



Error = (target output - actual output)

Reinforcement Learning (RL)



Objective: Get as much reward as possible

Key Features of RL

- The learner is not told what actions to take
- It find finds out what to do by trial-and-error search
- Possibility of delayed reward: sacrifice short-term gains for greater long-term gains
- Need to explore and exploit
- The environment is stochastic and unknown

Brief History

- Minsky's PhD thesis (1954): Stochastic Neural-Analog Reinforcement
- Samuel's checkers player (1959)
- Ideas about state-action rewards from animal learning and psychology
- Dynamic programming methods developed in operations research (Bellman)
- Died down in the 70s (along with much of the learning research)
- Temporal difference (TD) learning (Sutton, 1988), for prediction
- Q-learning (Watkins, 1989), for control problems
- TD-Gammon (Tesauro, 1992) the big success story
- brain (W.Schultz et.al, 1996) Evidence that TD-like updates take place in dopamibne neurons in the
- Currently a very active research community, with links to different fields

Success Stories

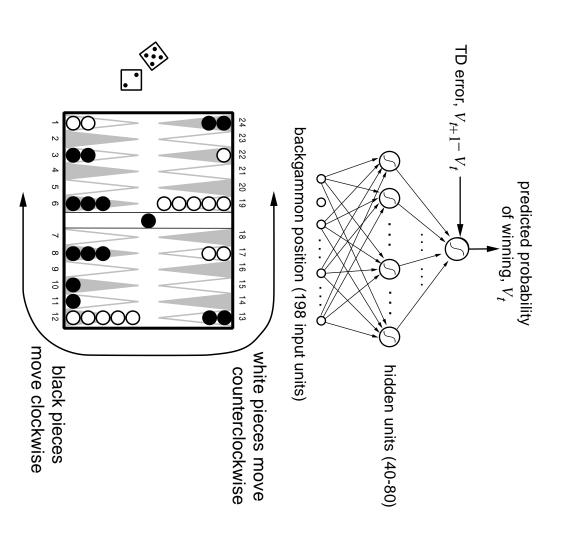
- TD-Gammon (Tesauro, 1992)
- Elevator dispatching (Crites and Barto, 1995): better than industry standard
- Inventory management (Van Roy et. al): 10-15% improvement over industry standards
- Job-shop scheduling for NASA space missions (Zhang and Dietterich,
- Dynnamic channel assignement in cellular phones (Singh and Bertsekas, 1994)
- Learning walking gaits in a legged robot (Huber and Grupen, 1997)
- approach Robotic soccer (Stone and Veloso, 1998) - part of the world-champion

All these are large, stochastic optimal control problems:

- Conventional methods require the problem to be simplified
- RL just finds an approximate solution!

problem An approximate solution can be better than a perfect solution to a simplified

TD-Gammon (Tesauro, 1992-1995)



TD-Gammon: Training Procedure

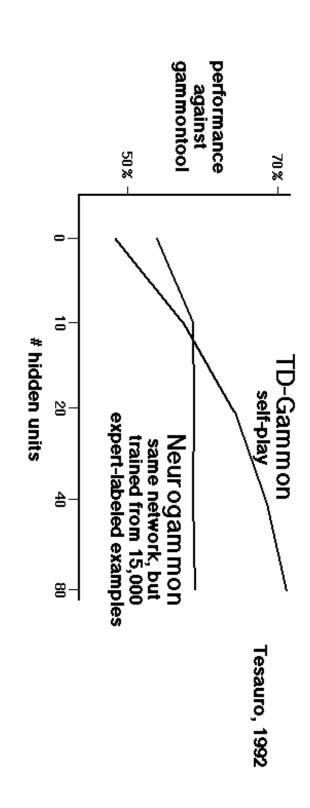
Immediate reward:

- +100 if win
- -100 if lose
- 0 for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

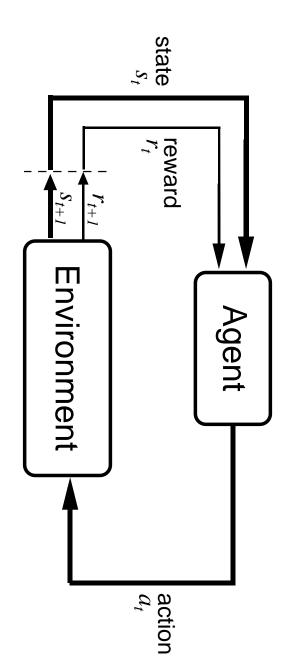
The Power of Learning from Experience



Expert examples are expensive and scarce

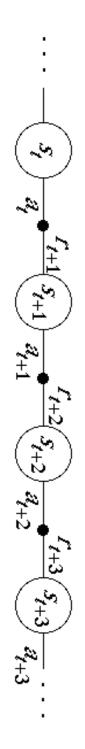
Experience is cheap and plentiful!

Reinforcement Learning Problem



- At each discrete time t, the agent observes state $s_t \in S$ and chooses action $a_t \in A$
- changes to S_{t+1} Then it receives an immediate reward r_{t+1} and the state

Markov Decision Processes (MDPs)



Assume:

- Finite set of states S (we will lift this later)
- Finite set of actions A(s) available in each state s
- γ = discount factor for later rewards (between 0 and 1, usually close to 1)
- Markov assumption: s_{t+1} and r_{t+1} depend only on s_t, a_t and not on anything that happened before t

Models for MDPs

 $r_s^a =$ expected value of the immediate reward if the agent is in sand does action a

$$r_s^a = E_{r_{t+1}} \{ s_t = s, a_t = a \}$$

 $p_{ss'}^a$ = probability of going from s to s' when doing action a

$$p_{ss'}^a = E_{s_{t+1}=s'}\{s_t = s, a_t = a\}$$

These form the *model* of the environment, and are *usually unknown*

Agent's Learning Task

Execute actions in environment, observe results, and learn policy

 $\pi: S \times A \rightarrow [0, 1],$

$$\pi(s,a) = \Pr\{a_T = a\}s_t = s$$

- Note that the target function is $\pi:S\to A$ but we have **no** Training examples are of form $\langle \langle s, a \rangle, r... \rangle$ training examples of form $\langle s, a \rangle$
- time Reinforcement learning methods specify how the agent should change the policy as a function of the rewards received over
- Roughly speaking, the agent's goal is to get as much reward as possible in the long run

Returns

 r_{t+1}, r_{t+2}, \dots We want to maximize the **expected return** $E\{R_t\}$ for Suppose the sequence of rewards received after time step t is every time step t

Episodic tasks: the interaction with the environment takes place in episodes (e.g. games, trips through a maze etc)

$$R_t = r_{t+1} + r_{t+2} + \dots + r_T$$

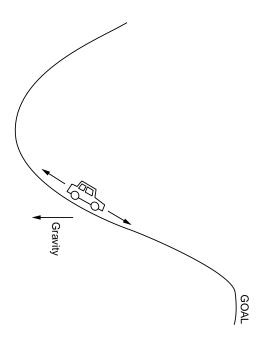
where T is the time when a terminal state is reached

Continuing tasks:

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=1}^{\infty} \gamma^{t+k-1} r_{t+k}$$

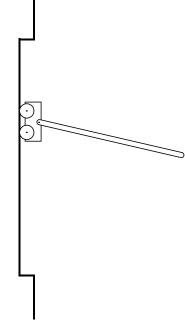
where $0 \le \gamma < 1$ is the discount factor for future rewards

Example: Mountain-Car



- States: position and velocity
- Actions: accelerate forward, accelerate backward, coast
- Rewards:
- reward = -1 for every time step, until car reaches the top
- reward = 1 at the top, 0 otherwise $\gamma < 1$
- top of the hill Return is maximized by minimizing the number of steps to the

Example: Pole Balancing



end of the track Avoid failure: pole falling beyond a given angle, or cart hitting the

- Episodic task formulation: reward = +1 for each step before failure
- ⇒ return = number of steps before failure
- otherwise, $\gamma < 1$ Continuing task formulation: reward = -1 upon failure, 0
- \Rightarrow return = $-\gamma^k$ if there are k steps before failure