Lecture 16: Introduction to Reinforcement Learning

® The reinforcement learning problem
e Brief history and example applications
e Markov Decision Processes

e \What to learn: policies and value functions

Control Learning

Consider learning to choose actions, e.g.,

e Robot learning to dock on battery charger
® Learning to choose actions to optimize factory output
e |earning to play Backgammon

Specific problem characteristics:

e Delayed reward

e Opportunity for active exploration

e There may not exist an adequate teacher!

e May need to learn multiple tasks using the same

sensors/effectors

Supervised Learning

Training Info: Desired (target) Output

| nputs

—

Supervised
Learning

Outputs

|'

Error = (target output - actual output)

Reinforcement Learning (RL)

Training Info: Evaluations (rewards/penalties)

Y

Inputs Reinforcement | Outputs: actions

— |caning [— B

Obijective: Get as much reward as possible

Key Features of RL

The learner is not told what actions to take

It find finds out what to do by trial-and-error search
Possibility of delayed reward: sacrifice short-term gains for
greater long-term gains

Need to explore and exploit

The environment is stochastic and unknown

Brief History

Minsky’s PhD thesis (1954): Stochastic Neural-Analog Reinforcement
Computer

Samuel’s checkers player (1959)

|ldeas about state-action rewards from animal learning and psychology
Dynamic programming methods developed in operations research
(Bellman)

Died down in the 70s (along with much of the learning research)
Temporal difference (TD) learning (Sutton, 1988), for prediction
Q-learning (Watkins, 1989), for control problems

TD-Gammon (Tesauro, 1992) - the big success story

Evidence that TD-like updates take place in dopamibne neurons in the
brain (W.Schultz et.al, 1996)

Currently a very active research community, with links to different fields

Success Stories

TD-Gammon (Tesauro, 1992)

Elevator dispatching (Crites and Barto, 1995): better than industry
standard

Inventory management (Van Roy et. al): 10-15% improvement over
industry standards

Job-shop scheduling for NASA space missions (Zhang and Dietterich,
1997)

Dynnamic channel assignement in cellular phones (Singh and
Bertsekas, 1994)

Learning walking gaits in a legged robot (Huber and Grupen, 1997)
Robotic soccer (Stone and Veloso, 1998) - part of the world-champion

approach

All these are large, stochastic optimal control problems:
e Conventional methods require the problem to be simplified
® RL just finds an approximate solution!
An approximate solution can be better than a perfect solution to a simplified

problem

TD-Gammon (Tesauro, 1992-1995)

predicted probability
of winning, V;

TD error, Viyq— Vi lmw

backgammon position (198 input units)

-

white pieces move
24 23 22 21 20 19 18 17 16 15 14 13 OOCjﬂmﬂO_OO—AS_mm

§° 818 1%
L
:

1

7 8 9 10 11 12

4 5 6

1 2 3

black pieces
move clockwise

TD-Gammon: Training Procedure

Immediate reward:
e +100 if win
e -100 if lose

e O for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

The Power of Learning from Experience

20% TD-Gammon
self-pla

Tesauro, 1992

performance
against

gammontool \ Neurogammon

same network, but
trained from 15,000
expent-labeled examples

B0%

_ _ I [[
0 10 20 40 g0

hidden units

Expert examples are expensive and scarce

Experience is cheap and plentiful!

Reinforcement Learning Problem

Vﬁ Agent

reward action
I't a

"A lev1 [
' s+1 | Environment
“ m 1 K

state

e At each discrete time t, the agent observes state § € Sand
chooses action & € A
e Then it receives an immediate reward I't1 and the state

changes to S 41

Markov Decision Processes (MDPSs)

é o115,) E@ Q
! ..u_ C hi .{+m

Assume:

e Finite set of states S (we will lift this later)

e Finite set of actions A(S) available in each state S

e Y = discount factor for later rewards (between 0 and 1, usually
close to 1)

e Markov assumption: &1 and I't4+1 depend only on &, & and

not on anything that happened before t

Models for MDPs

e I3 = expected value of the immediate reward if the agent is in S

and does action a

wm — _m:iﬁm =S = m.w

o P2, = probability of going from Sto S’ when doing action &

P =Es.i—sis =sa =a}

These form the model of the environment, and are usually unknown

Agent’s Learning Task

Execute actions in environment, observe results, and learn policy

T: Sx A—[0,1],
T(s,a) =Pr{ar =a}s =s

e Note that the target function is Tt: S— A but we have no
training examples of form (S, @)

Training examples are of form ((S,a),T...)

e Reinforcement learning methods specify how the agent should
change the policy as a function of the rewards received over
time

e Roughly speaking, the agent’s goal is to get as much reward as

possible in the long run

Returns

Suppose the sequence of rewards received after time step 1 is
lts1,t+2.... We want to maximize the expected return E{R; } for
every time step t

e Episodic tasks: the interaction with the environment takes place

In episodes (e.g. games, trips through a maze etc)

R =rey1+ T2+ 407

where T is the time when a terminal state is reached

e Continuing tasks:

00}

R =rit1+ Vg2 + <~:+w + ... = M /\t?H:iA
K=1

where O < y < lis the discount factor for future rewards

Example: Mountain-Car

GOAL

& Gravity

e States: position and velocity

® Actions: accelerate forward, accelerate backward, coast

e Rewards:
— reward = —1 for every time step, until car reaches the top
— reward = 1 at the top, 0 otherwise y < 1

e Return is maximized by minimizing the number of steps to the
top of the hill

Example: Pole Balancing

— - —

Avoid failure: pole falling beyond a given angle, or cart hitting the
end of the track
e Episodic task formulation: reward = +1 for each step before
failure
= return = number of steps before failure
e Continuing task formulation: reward = -1 upon failure, O
otherwise, Yy < 1

= return = I<_A if there are K steps before failure

