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problem
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arkov
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�

W
hatto

learn:
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and
value

functions



C
o

n
tro

lL
earn

in
g

C
onsider

learning
to

choose
actions,e.g.,

�

R
obotlearning

to
dock

on
battery

charger

�

Learning
to

choose
actions

to
optim

ize
factory

output

�

Learning
to

play
B

ackgam
m
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S
pecific

problem
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�

D
elayed

rew
ard

�

O
pportunity

for
active

exploration

�

T
here

m
ay

notexistan
adequate

teacher!

�

M
ay

need
to

learn
m

ultiple
tasks

using
the

sam
e

sensors/effectors
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in
g
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=
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earn

in
g
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L
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R
einforcem

ent
L

earning
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O

utputs: actions

T
raining Info: E
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O
bjective:

G
etas

m
uch
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as
possible
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F
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f
R

L
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T
he

learner
is

nottold
w

hatactions
to

take

�

Itfind
finds

outw
hatto

do
by

trial-and-error
search

�

P
ossibility

ofdelayed
rew

ard:
sacrifice

short-term
gains

for

greater
long-term

gains

�

N
eed

to
explore

and
exploit
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T
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environm
entis
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and
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B
rief

H
isto

ry
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M
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P
hD
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(1954):

S
tochastic

N
eural-A

nalog
R

einforcem
ent

C
om

puter

�

S
am

uel’s
checkers

player
(1959)

�

Ideas
aboutstate-action

rew
ards

from
anim
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and

psychology

�

D
ynam

ic
program

m
ing

m
ethods

developed
in

operations
research

(B
ellm

an)

�

D
ied

dow
n

in
the

70s
(along

w
ith

m
uch

ofthe
learning

research)

�

Tem
poraldifference

(T
D

)
learning

(S
utton,1988),for

prediction

�

Q
-learning

(W
atkins,1989),for

controlproblem
s

�

T
D

-G
am

m
on

(Tesauro,1992)
-
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�

E
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D
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E
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�
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-
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pion
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ethods
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problem
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sim
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R
L

justfinds
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approxim
ate

solution!

A
n

approxim
ate

solution
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than
a
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problem



T
D

-G
am

m
o

n
(Tesau
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g
P
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u
re

Im
m

ediate
rew

ard:

�

+
100

ifw
in

�

-100
iflose

�

0
for

allother
states
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by

playing
1.5

m
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gam
es
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N
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m
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E
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E
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d
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E
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t
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r
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1

state
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A
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e
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�

S
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A

�
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hen
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im
m

ediate
rew

ard
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�
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M
arkov

D
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n
P

ro
cesses

(M
D

P
s)

A
ssum

e:

�

F
inite

setofstates
S

(w
e

w
illliftthis

later)

�

F
inite

setofactions
A

� s

�

available
in

each
state

s

�

γ
=

discountfactor
for

later
rew

ards
(betw

een
0

and
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to

1)

�

M
arkov

assum
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�

1
and
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�

1
depend

only
on

st

� a
t

and
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M
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r
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t �
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� 0
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R
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entlearning
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how
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policy
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rew
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R
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m
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possible
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w
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E
pisodic
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w

ith
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gam
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through

a
m
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etc)

R
t �
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t �
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�
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k �
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p
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o

u
n
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-C

ar

G
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G
O

A
L

�

S
tates:

position
and

velocity

�

A
ctions:

accelerate
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ard,accelerate
backw
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�

R
ew

ards:

–
rew

ard
=

�

1
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every
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e
step,untilcar
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–
rew
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=
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top,0
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�

1

�

R
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inim
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E
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p
le:

P
o

le
B
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g

A
void

failure:
pole

falling
beyond

a
given

angle,or
carthitting

the

end
ofthe

track

�

E
pisodic

task
form

ulation:
rew

ard
=

+
1

for
each

step
before

failure

�

return
=

num
ber

ofsteps
before

failure

�

C
ontinuing

task
form

ulation:
rew

ard
=

-1
upon

failure,0

otherw
ise, γ

�

1

�

return
=

�

γ
k

ifthere
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k
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before
failure


