Lecture 6: Artificial Neural Networks

e Overview

e Perceptron learning



The human brain

Contains ~ 10! neurons, each of which may have up to ~
10%° iInput/output connections

Each neuron is fairly slow, with a switching time of ~ 1
millisecond

Yet the brain is very fast and reliable at computationally intensive
tasks (e.g. vision, speech recognition, knowledge retrieval)
Although computers are at least 1 million times faster in raw
switching speed!

The brain is also more fault-tolerant, and exhibits graceful
degradation with damage

Maybe this is due to its architecture, which ensures massive

parallel computation!



Connectionist models

Based on the assumption that a computational architecture similar

to the brain would duplicate (at least some of) its wonderful abilities.

Properties of artificial neural nets (ANNS):
e Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

e Emphasis on tuning weights automatically

MANY different kinds of architectures, motivated both by biology

and mathematics/efficiency of computation



Example: ALVINN (Pomerleau, 1993)

Sharp Straight Sharp
Left Ahead Right
k k ce e k 30 Output
Units
4 Hidden
Units
30x32 Sensor
Input Retina




What is a neural network?

A graph of simple individual units (“neurons”)
e The edges of the graph are links on which the neurons can send
data to each other
The edges have weights, which multiply the data that is sent
® |earning = choosing weight values for all edges in the graph
Sometimes learning means adding/deleting nodes
e In the vast majority of applications, the graph is acyclic and

directed.



Perceptron

— -0

n
1if 2w x>0
o= i—=0 |1
-1 otherwise

Sometimes we will add a fixed component £y = 1 to all the

Instances and use simpler vector notation:

. 1 ifw-2>0
o(Z) =
—1 otherwise.



Perceptron learning algorithm

Each training example is a pair of the form A.ﬂm“ wv_ where Z is the

vector of input values, and t is the target output value.

1.

2
3.
4

Initialize all weights w; to small random values.
Let (Z, t) be a training instance.

Compute the output 0 = sgn(w - ).

If o # t, adapt the weights:

w; < w; + a(t — o)z, Vi,

where 0 < o < 1 is the learning rate.

Repeat from step 2, until no errors are made.



Decision surface of a perceptron

XN> XN>

() (b)

Represents some useful functions.

Example: what weights represent g(x1,x2) = AND(x1,z2)?

But some functions not linearly separable! E.g. XOR.

Therefore, we will want networks of perceptron-like elements.



Convergence of the perceptron algorithm

e Converges If training data is linearly separable and « sufficiently

small (usually decreased over time)

e Oscillates if the data is not linearly separable.

We would like to have an algorithm that converges when the training
examples are not separable too

Ideally, it would converge to a “best fit” or “minimum error” on the
training data



