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Abstract 

We present new results from applying the as- 
sumptions of two-player game searches, namely 
limited search horizon and commitment to moves 
in constant time, to single-agent problem-solving 
searches. We show that the search depth achiev- 
able with alpha pruning for a given amount of 
computation actually increases with increasing 
branching factor. We prove that real-time-A* 
(RTA*) makes locally optimal decisions given the 
heuristic information available to it on a tree. 
We then modify RTA* to perform optimally on 
a graph as well. We also prove that RTA* is 
guaranteed to find a solution to any solvable 
problem regardless of the initial heuristic val- 
ues. In addition, we develop a learning version of 
RTA* that improves its performance over multi- 
ple problem-solving trials, and prove convergence 
of the learned heuristic values to the exact values. 
Finally, we demonstrate that these algorithms ef- 
fectively solve larger problems than have previ- 
ously been solvable with heuristic search tech- 
niques. 

1 ntroduction 

Heuristic search has been applied both to two-player games 
and single-agent problems. Research on two-player games 
assumes insufficient computation to search all the way to 
terminal positions, and that moves must be irrevocably 
committed under strict time constraints [l]. Conversely, 
research on single-agent problems assumes that search can 
proceed to goal positions, that an entire solution may be 
computed before even the first move need be executed. As 
a result, existing single-agent heuristic search algorithms, 
such as A* [2] and IDA* [3], do not scale up to large prob- 
lems due to their exponential complexity, a necessary con- 
sequence of finding optimal solutions. The goal of this 
research is to extend the techniques of heuristic search to 
handle single-agent problems under real-time constraints. 
By this we mean that computation or information is lim- 
ited, and that each individual action must actually be ex- 
ecuted in constant time. This requires sacrificing solution 
optimality, and imposing a limited search horizon. A pre- 
vious paper [4] reported the first results of this research. 
A more comprehensive treatment can be found in [5]. 

*This research was supported by an NSF Presidential Young 
Investigator Award. 

2 Minimin with Alpha Pruni 
The first step in applying bounded lookahead search to 
single-agent problems is to specialize minimax search to 
the case where a single-agent makes all the moves. The re- 
sulting algorithm, called minimin search, searches forward 
from the current state to a fixed depth horizon determined 
by the computational resources available, and then applies 
the A* cost function of f(n) = g(n) + h(n) to the frontier 
nodes. Since a single agent makes all the decisions, the 
minimum value is then backed up, instead of the minimax 
value, and a single move is made in the direction of the 
minimum value. Making only a single move at a time fol- 
lows a strategy of least commitment, since the backed-up 
values are only heuristic, and further search may recom- 
mend a different second move than anticipated by the first 
search. 

There exists an analog to alphabeta pruning [S] that 
makes the same decisions as full minimin search, but by 
searching many fewer nodes. It is based on the assumption 
that h is a metric. Since by definition all reasonable cost 
functions are metrics, this condition is not a restriction 
in practice. If h is a metric, then f = g + h is mono- 
tonically non-decreasing along any path. Therefore, given 
static evaluations of all interior nodes, branch-and-bound 
can applied as follows. The value of the best frontier node 
encountered so far is stored in a variable called Q, and 
whenever the cost of a node equals or exceeds a, the cor- 
responding branch is pruned off. In addition, whenever a 
frontier node is encountered with a value less than o, Q is 
reset to this lower value. 

2.1 Performance of Alpha 
How much does alpha pruning improve the efficiency of 
minimin search? Figure 1 shows a comparison of the total 
number of nodes generated as a function of search hori- 
zon for several different sliding tile puzzles, including the 
3 x 3 (8 Puzzle), 4 x 4 (15 Puzzle), 5 x 5 (24 Puzzle), and 
18 x 10 (99 Puzzle) versions. Each puzzle consists of a 
square frame containing a number of movable tiles, and 
one empty position. Any tile that is horizontally or verti- 
cally adjacent to the empty position can be slid into that 
position. The task is to rearrange the tiles from a given 
initial configuration to a particular goal configuration. The 
straight lines on the left represent brute-force search with 
no pruning, while the curved lines to the right represent 
the number of nodes examined with alpha pruning using 
the Manhattan Distance heuristic function. It is computed 
by determining, for each individual tile, the number of grid 
units it is displaced from its goal position, and summing 
these values over all tiles. In each case, the values are the 
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Figure 1: Search horizon vs. nodes generated for brute-force and alpha pruning search 
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averages of 1000 random solvable initial states. previously visited states, and computing it for new states, 
One remarkable aspect of this data is the effectiveness until a solution is found. 

of alpha pruning. For example, if we fix the amount of 
computation at 100,000 nodes per move, the reachable 99 3.1 Correctness of FWA* 
puzzle search horizon is multiplied by a factor of five from Since RTA* is making decisions based on limited infor- 
10 to 50 moves. In comparison, even under perfect order- mation, the best we can say about the quality of decisions 
ing, alphabeta pruning only doubles the effective search 
horizon. 

made by this algorithm is that RTA* makes optimal moves 

Even more surprising, however, is the fact that beyond 
relative to the part of the search space that it has seen so 
far. Initially we will assume that the graph is a tree, in 

a certain point the search horizon achievable with alpha other words contains no cycles, and prove such an opti- 
pruning actually increases with increasing branching fac- mality theorem. Then we will modify RTA* to perform 
tor! In other words, we can search significantly deeper optimally on a graph. The same result holds for the more 
in the Fifteen Puzzle than in the Eight Puzzle, and even 
deeper in the 24 puzzle, in spite of the fact that the brute- 

complex algorithm. 
As usual, a node is generated when the data structure 

force branching factors are larger. 
How general is this paradoxical affect? An analytic 

corresponding to that node is created in the machine. A 
node is expanded when all of its children are generated. 

model that captures the monotonicity property necessary Define the search frontier as the set of nodes that have 
for branch-and-bound is a tree with uniform branching fac- been generated but not expanded since the beginning of 
tor and uniform depth, where the edges are assigned a the search, including all lookahead phases of the search so 
value of zero or one independently with some probability far. This is analogous to the OPEN list in A*. If n is a 
p. The value of a node is the sum of the edge costs from frontier node, let h(n) be the heuristic static evaluation of 
the root to that node. This model, which is identical to node n. Let gz(n) be the actual distance in the graph from 
that studied by Karp and Pearl [7] in a different context, node 2 to node n. Note that g(n) in A* is g,(n) where s 
predicts the phenomenon observed above, namely that in- is the initial state. Similarly, let f,(n) = g=(n) + h(n). 
creasing branching factor allows increasing search depth 
with the same amount of computation. Thus, this counter- Tlheo~cena P Given a cumulative search frontier, at every 

intuitive result appears to be a fairly general property of cycle RTA* moves from the current state x toward a fron- 

branch-and-bound algorithms, rather than an artifact of tier node n for which the value of fz(n) = gz(n) + h(n) is 

sliding tile puzzles. a minimum. 

A simple intuitive explanation for why this occurs is Proof: If x is an interior node of the tree, define h(x) 
that increasing the branching factor increases the num- to be the minimum value of fz(n) = g,(n) + h(n) over 
ber of frontier nodes. Since alpha is the minimum value of 
the frontier nodes, increasing the number of frontier nodes 

all frontier nodes n below x in the tree. This definition 

tends to decrease alpha. A lower value of alpha in turn 
of h(x) for interior nodes is relative to a tree rooted at 
the current state of the problem solver. We will show by 

causes more branches to be pruned sooner, resulting in induction on the number of moves made by the algorithm 
greater savings. Empirically, this effect more than com- that h(x) is the value stored by RTA* with each previously 
pensates for the increased branching factor. visited node x of the tree. Consider the first move of the 

algorithm, starting from an initial state s. Minimin search 
eal- generates a tree rooted at s and terminating in a set of 

frontier nodes at the search horizon. The backed-up value 
Minimin lookahead search with alpha pruning is a strat- associated with each child ci of the start state s is the 
egy for evaluating the immediate children of the current minimum value of f,*(n) = gC,(n) + h(n) for each frontier 
node. It runs in a planning mode where the moves are node below ci, which is h(q). Note that alpha pruning has 
merely simulated, rather than actually being executed in no effect on the values returned by the lookahead search, 
the real world. As such, it can be viewed as providing a but simply computes them more efficiently. The problem 
range of more accurate but computationally more expen- solver then adds g8(ci) to h(ca) to compute fs(ci), moves 
sive heuristic functions, one corresponding to each search to the child with the minimum value, say cl without loss 
horizon. of generality, and the stores the second best value with 

Real-Time-A* (RTA*) is an algorithm for controlling the state s. This move changes the root of the tree from s to 
sequence of moves actually executed. The neighbors of cl, as if the tree was now picked up by cl. This changes 
the current state are generated and a heuristic function, cl to the parent of s instead of vice-versa, but leaves all 
including lookahead search with alpha pruning, is applied other parent-child relationships the same. The children of 
to each new state. The neighbor with the minimum g + s are now cd for i > 1. Since the second best value is the 
h value is chosen as the new current state, and the old minimum value of fs (cd) = g, (cd) + h(ca) for i > 1, the 
current state is stored in a table along with the second best value stored with s is exactly h(s) after the move. For 
g + h value, which is the best value among the remaining the induction step, assume that at a given point in the 
children. This represents the best estimate of the cost algorithm, the value stored with each node y in the hash 
of finding the solution via the old current state from the table is h(y), and that the current state of the problem 
perspective of the new current state. This assumes that solver is x. For each of the neighbors ci of x, if ci is not in 
the edge costs in either direction are equal. The extension the table, minimin search will be used to compute h(ca). 
to unequal edge costs is straightforward. The algorithm Otherwise, h(cd) will be read from the table. In either 
simply repeats this cycle, using the stored h values for case, the correct value of h(ci) will be returned. Then by 



following exactly the same argument as above, the value 
stored with 2 will be h(z) after the move. Finally, RTA* 
always moves from its current state 2 to the the neighbor 
ci for which f,(y) = g2(ci) + h(q) is a minimum. This 
is the same as moving toward a frontier node n for which 
f,(n) = gm(n) + h(n) is a minimum. 

3.2 RTA* on a Graph 
The above theorem holds for RTA* on a tree with no cy- 
cles. On a graph, however, this simple version of RTA* 
may occasionally make a suboptimal move, and must be 
modified to achieve optimal performance. 

The problem is that the h values are relative to the cur- 
rent state of the problem solver, and hence when the al- 
gorithm returns to a previously visited state by a different 
path from which it left, some of the h values in the graph 
may be incorrect. In particular, those values that are based 
on a path that passes back through the new current state 
will be incorrect from the perspective of that current state. 
When we return to a previously visited state via a differ- 
ent path from which we left, the incorrect values must be 
modified. 

In general, h(y) will b e correct from the perspective of 2 
if it is based on a path through some neighbor z other than 
2. In order for this to be the case, y must have a neighbor 
Z, other than X, such that h(y) = fy(z) = gY(z) + h(z). 
If there is such a neighbor z of y, then h(y) is correct rel- 
ative to node 2. This check must be performed on each 
neighbor y of 2. If all values are found to be correct, then 
the algorithm can proceed as usual. If any neighbor of 
the current state fails this test, then the same test must 
be performed on each of its neighbors, since their values 
could be incorrect for the same reason. This amounts to 
recursively exploring the subgraph of incorrect values un- 
til each branch terminates in correct values. The correct 
terminal values are then recursively backed up according 
to the usual rule until all the h values are correct rela 
tive to the new current state. At that point the algorithm 
continues as usual. 

This fixup phase is analogous to the pointer redirection 
phase of A* when a cycle in the graph is detected. When 
it is added to RTA*, Theorem 1 becomes true for general 
graphs as well as trees. Unfortunately, space limitations 
preclude us from presenting the proof. 

3.3 Completeness of RTA* 
Under what conditions is RTA* guaranteed to find a goal 
state? Here we will assume a graph with cycles, but use 
only the simple version of RTA* that does not correct val- 
ues in cycles. One caveat is that in an infinite problem 
space, RTA* may not find a solution, since h values could 
easily be constructed to send the problem solver down an 
infinite wrong path. A second caveat is that even in a finite 
problem space, if there are one-way edges with dead-ends, 
RTA* could end up in a part of the graph from which the 
goal node is no longer reachable. Finally, we must rule 
out cycles with zero or negative cost, for obvious reasons. 
These are the only restrictions, however, and for all other 
problems, RTA* is guaranteed to eventually find a solution 
if one exists. The only constraint placed on the heuristic 
evaluation function is that it return finite values. 

Theorem 2 In a finite problem space with positive edge 
costs and finite heuristic values, in which a goal state is 
reachable from every state, RTA* will find a solution. 

Proof: Assume the converse, that there exists a path to 
a goal state, but that RTA* will never reach it. In order for 
that to happen in a finite problem space, there must exist 
a finite cycle that RTA* travels forever, and that does not 
include the goal state. Also, since a goal state is reachable 
from every state, if a goal state is not part of the cycle, 
there must be at least one edge leading away from the 
cycle. We will show that RTA* must eventually leave any 
such cycle. At any point in the algorithm, every node in 
the graph has a value associated with it, either explicitly 
or implicitly. For the nodes already visited, this will be 
their value in the hash table, and for the unvisited nodes 
it will be their original heuristic evaluation. Consider an 
individual move made by RTA*. It reads or computes 
the value of each of its neighbors, adds the corresponding 
positive edge costs, and moves to the neighbor with the 
minimum resulting value (the new state). At the same 
time, it writes the second best value in the state it left 
(the old state). S’ mce the second best value is greater than 
or equal to the best, and the value of the new state must 
be strictly less than its value after the cost of the edge 
from the old state is added to it, the value written into 
the old state must be strictly greater than the value of 
the new state. Thus, the algorithm always writes a larger 
value in the state it leaves than the value of the state it 
moves too. Now consider a state with the lowest value 
on the hypothesized infinite cycle. Its value must be less 
than or equal to the value of the next state on the cycle. 
When the algorithm reaches a node with the lowest value, 
it must increase its value in passing, in order to move to 
the next state, which has an equal or greater value. Thus, 
every trip of the algorithm around the cycle must increase 
the value of the node on the cycle with the lowest value. 
Therefore, the values of all nodes on the cycle must increase 
without bound. At some point, the value of a node on a 
path that leads away from the cycle will be lower than 
the competing neighbor on the cycle. At that point, the 
algorithm will leave the cycle, violating our assumption of 
an infinite loop. Thus, there can be no infinite loops in a 
subset of the problem graph. Therefore, in a finite problem 
space, every node, including a goal node if it exists, must 
eventually be visited. When the algorithm visits a goal, it 
will terminate successfully. 

4 Learning-RTA* 
We now turn our attention to the problem of multiple 
agents solving multiple problem instances in the same 
problem space with the same set of goals. The key question 
is to what extent performance improvement, or learning, 
will occur over multiple problem solving trials. The infor- 
mation saved from one trial to the next will be the table 
of values recorded for previously visited states. 

Unfortunately, while RTA* as described above is ideally 
suited to single problem solving trials, it must be modified 
to accommodate multi-trial learning. The reason is that 
the algorithm records the second best estimate in the pre- 
vious state, which represents an accurate estimate of that 
state looking back from the perspective of the next state. 
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However, if the best estimate turns out to be correct, then 
storing the second best value can result in inflated values 
for some states. These inflated values will direct the next 
agents in the wrong direction on subsequent problem solv- 
ing trials. 

This difficulty can be overcome simply by modifying the 
algorithm to store the best value in the previous state in- 
stead of the second best value. We call this algorithm 
Learning-RTA* or LRTA* for short. LRTA* retains the 
completeness property of RTA*s shown in Theorem 2, and 
the same proof is valid for LRTA*. It does not, however, 
always make locally optimal decisions in the sense of The- 
orem 1. 

4.1 Convergence of LRTA* 
An important property that LRTA* does enjoy, however, 
is that repeated problem solving trials cause the heuris- 
tic values to converge to their exact values. We assume a 
set of goal states, and a set of initial states, from which 
the problem instances are chosen randomly. This assures 
that all possible initial states will actually be visited. We 
also assume that the initial heuristic values do not over- 
estimate the distance to the nearest goal. Otherwise, a 
state with an overestimating heuristic value may never be 
visited and hence remain unchanged. Finally, we assume 
that ties are broken randomly. Otherwise, once an opti- 
mal solution from some initial state is found, that path 
may continue to be traversed in subsequent problem solv- 
ing trials without discovering additional optimal solution 
paths. Under these conditions, we can state and prove the 
following general result: 
Theorem. 3 Given non-overestimating initial heuristic 
values, over repeated trials of LRTA*, the heuristic values 
will eventually converge to their exact values along every 
optimal path from an initial state to a goad state. 

Proof: The first observation is that visiting a state and 
updating its value preserves the non-overestimating prop 
erty of h. Assuming that the h values of the neighbors 
of a given state do not overestimate distance to the goal, 
then after adding the corresponding edge values to each of 
the neighboring states, the minimum of the resulting val- 
ues cannot overestimate the distance from the given state. 
Define the value h(n) of a state n to be consistent with 
those of its neighbors h(n’), if h(n) is equal to the min- 
imum of h(n’) + k( n, n’) for all neighbors n’ of n, where 
k(n, n’) is the cost of the edge from n to n’. Now, assume 
the converse of the theorem, that after an infinite number 
of trials, there exists a state along an optimal path from 
an initial state to a goal whose value is incorrect. Assum- 
ing that h of all goal states is equal to zero, if the values 
of any node along any path to a goal state is incorrect, 
then some node along the same path must be inconsis- 
tent. This follows formally by induction on the distance 
from the goal. If there exists a state whose value is in- 
consistent, then there must exist a least such state in an 
arbitrary ordering of the states. Call such a state x. By 
assumption, x lies along an optimal path from some initial 
state, s, to a goal state. In addition, since all the h values 
are non-overestimating and this property is preserved by 
LRTA*, the f = g+h values of all nodes along the optimal 
path from s to x, from the perspective of s, are less than or 

equal to their exact values. Since starting states are chosen 
randomly, and ties are broken randomly, this ensures that 
node 2 will eventually be visited by RTA*. When it is, its 
value will become consistent with those of its neighbors, 
thus violating the assumption that it is the least inconsis- 
tent state in some ordering. Therefore, the value of every 
node along an optimal path from an initial state to a goal 
state must eventually reach its correct value. 

5 rnpirical esults 
RTA* with minimin lookahead search and alpha pruning 
has been implemented for the 8, 15, and 24 puzzles. Fig- 
ure 4 shows a graph of the average solution length over a 
thousand problem instances versus the depth of the search 
horizon for each of the three puzzles. 

As expected, the solution lengths generally decrease with 
increasing search horizon. For the Eight Puzzle, searching 
to a depth of 10 moves, which requires generating an aver- 
age of 92 nodes per move, produces solution lengths (42) 
that are only a factor of two greater than average optimal 
solutions (21). In the case of the Fifteen Puzzle, finding 
solution lengths (106) that are two times average optimal 
(53) requires searching to a depth of 22 moves and evalu- 
ating 2622 nodes per move on the average. While no prac- 
tical techniques exist for computing optimal solutions for 
the Twenty-Four Puzzle, we can reasonably estimate the 
length of such solutions at about 100 moves. Searching to 
a depth of 25 moves, which requires generating an average 
of 4057 nodes per move, produces solution lengths of about 
400 moves. The time required to find solutions is on the 
order of tenths of seconds for the 8 puzzle, seconds for the 
15 puzzle, and tens of seconds for the 24 puzzle. These are 
the first reported solutions to the 24 puzzle using heuristic 
search techniques. 

Conclusions 
We present a number of new results in the area of real- 
time heuristic search. The first is that the search hori- 
zon reachable with alpha pruning increases with increasing 
branching factor of the problem space. Next, we prove that 
RTA* makes locally optimal decisions on a tree, relative to 
the complete search horizon visible to the algorithm since 
it began. We then modify the algorithm to make locally 
optimal decisions on a general graph. Even without this 
modification, however, we prove that RTA* is guaranteed 
to eventually find a solution. We also modify RTA* to 
learn more accurate heuristic values over multiple problem 
solving trials, and prove that the learned values will con- 
verge to the exact values over every optimal path from an 
initial state to a goal state. Finally, we present new em- 
pirical results that demonstrate that these algorithms are 
effective at solving larger problems than have previously 
been solvable with heuristic search algorithms. 
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Figure 2: Search horizon vs. solution length for RTA* 
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