
Lecture 23: Reinforcement Learning

• MDPs revisited

• Model-based learning

• Monte Carlo value function estimation

• Temporal-difference (TD) learning

• Exploration

November 23, 2006 1 COMP-424 Lecture 23

Recall: Markov Decision Processes

a = Apply to academia

Grad School
 (G)

Academia
 (A) r=+1

0.9

0.1

Unemployed
(U)

Industry
 (I)

0.8 0.2

r=+10r=−0.1

0.9

0.1

0.5

0.5

r=−1

0.6

0.4

i

a

ig

n

n=Do Nothing
i = Apply to industry
g = Apply to grad school

• A set of states S

• A set of actions A

• Expected rewards R(s, a)

• Transition probabilities T (s, a, s′)

• Discount factor γ

November 23, 2006 2 COMP-424 Lecture 23

Recall: Policy Evaluation Problem

• Suppose someone told us a policy for selecting actions,

π : S ×A→ [0, 1]
• How much return do we expect to get if we use it to behave?

V π(s) = Eπ [Rt|st = s] = Eπ[
∞

X

k=1

γk−1rt+k|st = s]

• If we knew this, we could then improve the policy (e.g., using

policy iteration)

November 23, 2006 3 COMP-424 Lecture 23

Iterative Policy Evaluation

1. Start with some initial guess V0

2. During every iteration k, update the values of all states:

Vk+1(s)←
X

a

π(s, a)

R(s, a) + γ
X

s′

T (s, a, s′)Vk(s′)

!

, ∀s

3. Stop when the maximum change between two iterations is

smaller than a desired threshold (the values stop changing)

The value of one state is updated based on the values of the states

that can be reached from it

November 23, 2006 4 COMP-424 Lecture 23

How Is Learning Tied with Dynamic Programming?

• Observe transitions in the environment, learn an approximate

model R̂(s, a), T̂ (s, a, s′)

– Use maximum likelihood to compute probabilities

– Use supervised learning for the rewards

• Pretend the approximate model is correct and use it for any

dynamic programming method

• This approach is called model-based reinforcement learning

• Many believers, especially in the robotics community

November 23, 2006 5 COMP-424 Lecture 23

Monte Carlo Methods

• Suppose we have an episodic task: the agent interacts with the

environment in trials or episodes, which terminate at some point

– E.g. game playing

• The agent behaves according to some policy π for a while,

generating several trajectories.

• How can we compute V π?

• Compute V π(s) by averaging the observed returns after s

from the trajectories in which s was visited.

November 23, 2006 6 COMP-424 Lecture 23

Monte Carlo Methods

• Suppose we have an episodic task: the agent interacts with the

environment in trials or episodes, which terminate at some point

• The agent behaves according to some policy π for a while,

generating several trajectories.

• How can we compute V π?

• Compute V π(s) by averaging the observed returns after s on

the trajectories in which s was visited.

November 23, 2006 7 COMP-424 Lecture 23

Implementation of Monte Carlo Policy Evaluation

Let Vn+1 be the estimate of the value from some state s after
observing n + 1 trajectories starting at s.

Vn+1 =
1

n + 1

n+1
X

i=1

Ri =
1

n + 1
(

n
X

i=1

Ri + Rn+1)

=
n

n + 1

1

n

n
X

i=1

Ri +
1

n + 1
Rn+1

=
n

n + 1
Vn +

1

n + 1
Rn+1 = Vn +

1

n + 1
(Rn+1 − Vn)

If we do not want to keep counts of how many times states have

been visited, we can use a learning rate version:

V (st)← V (st) + α(Rt − V (st))

November 23, 2006 8 COMP-424 Lecture 23

What If State Space Is Too Large ?

• Represent the state as a vector of input variables

• Represent V as a linear/polynomial function, or as a neural

network

• Use Rt − V (st) as the error signal!

November 23, 2006 9 COMP-424 Lecture 23

Temporal-Difference (TD) Prediction

• Monte Carlo uses as a target estimate for the value function the

actual return, Rt:

V (st)← V (st) + α [Rt − V (st)]

• The simplest TD method, TD(0), uses instead an estimate of the

return:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)]

If V (st+1) were correct, this would be like a dynamic

programming target!

November 23, 2006 10 COMP-424 Lecture 23

TD Is Hybrid between Dynamic Programming and Monte Carlo!

• Like DP, it bootstraps (computes the value of a state based on

estimates of the successors)

• Like MC, it estimates expected values by sampling

November 23, 2006 11 COMP-424 Lecture 23

TD Learning Algorithm

1. Initialize the value function, V (s) = 0,∀s

2. Repeat as many times as wanted:

(a) Pick a start state s for the current trial

(b) Repeat for every time step t:

i. Choose action a based on policy π and the current state s

ii. Take action a, observed reward r and new state s′

iii. Compute the TD error: δ ← r + γV (s′)− V (s)

iv. Update the value function:

V (s)← V (s) + αsδ

v. s← s′

vi. If s′ is not a terminal state, go to 2b

November 23, 2006 12 COMP-424 Lecture 23

Example

Suppose you start will all 0 guesses and observe the following

episodes:

• B,1

• B,1

• B,1

• B,1

• B,0

• A,0; B (reward not seen yet)

What would you predict for V (B)? What would you predict for

V (A)?

November 23, 2006 13 COMP-424 Lecture 23

Example: TD vs Monte Carlo

• For B, it is clear that V (B) = 4/5.

• If you use Monte Carlo, at this point you can only predict your

initial guess for A (which is 0)

• If you use TD, at this point you would predict 0 + 4/5! And you

would adjust the value of A towards this target.

November 23, 2006 14 COMP-424 Lecture 23

Example (continued)

Suppose you start will all 0 guesses and observe the following

episodes:

• B,1

• B,1

• B,1

• B,1

• B,0

• A,0; B 0

What would you predict for V (B)? What would you predict for

V (A)?

November 23, 2006 15 COMP-424 Lecture 23

Example: Value Prediction

• The estimate for B would be 4/6

• The estimate for A, if we use Monte Carlo is 0; this minimizes

the sum-squared error on the training data

• If you were to learn a model out of this data and do dynamic

programming, you would estimate the A goes to B, so the value

of A would be 0 + 4/6

• TD is an incremental algorithm: it would adjust the value of A

towards 4/5, which is the current estimate for B (before the

continuation from B is seen)

• This is closer to dynamic programming than Monte Carlo

• TD estimates take into account time sequence

November 23, 2006 16 COMP-424 Lecture 23

Example: Eligibility Traces

• Suppose you estimated V (B) = 4/5, then saw A, 0, B, 0.

• Value of A is adjusted right away towards 4/5

• But then the value of B is decreased from 4/5 to something like

4/6

• It would be nice to propagate this information to A as well!

November 23, 2006 17 COMP-424 Lecture 23

Eligibility Traces (TD(λ))

δtet et
et

et

Time

st
st+1

st-1

st-2

st-3

• On every time step t, we compute the TD error:

δt = rt+1 + γV (st+1)− V (st)

• Shout δt backwards to past states

• The strength of your voice decreases with temporal distance by

γλ, where λ ∈ [0, 1] is a parameter

November 23, 2006 18 COMP-424 Lecture 23

Advantages

• No model of the environment is required! TD only needs

experience with the environment.

• On-line, incremental learning:

– Can learn before knowing the final outcome

– Less memory and peak computation are required

• Both TD and MC converge (under mild assumptions), but TD

usually learns faster.

November 23, 2006 19 COMP-424 Lecture 23

Large State Spaces: Adapt Supervised Learning Algorithms

• A training example has an input and a target output

• The error is measured based on the difference between the

actual output and the desired (target) output

Training Info: Desired (target) Output

Supervised
Learning

Inputs Outputs

November 23, 2006 20 COMP-424 Lecture 23

Value-Based Methods

We will use a function approximator to represent the value function

• The input is a description of the state

• The output is the predicted value of the state

• The target output comes from the TD update rule: the target is

rt+1 + γV (st+1)

November 23, 2006 21 COMP-424 Lecture 23

On-line Gradient Descent TD

1. Initialize the weight vector of the function approximator w

2. Pick a start state s

3. Repeat for every time step t:

(a) Choose action a based on policy π and the current state s

(b) Take action a, observe immediate reward r and new state s′

(c) Compute the TD error: δ ← r + γV (s′)− V (s)

(d) Update the weight vector: w← w + αδ∇V (s)

(e) s← s′

November 23, 2006 22 COMP-424 Lecture 23

Observations

• For linear function approximators, the gradient is just the input

feature vector

• For neural networks, this algorithm reduces to running

backpropagation with TD error at the output

November 23, 2006 23 COMP-424 Lecture 23

RL Algorithms for Control

• TD-learning (as above) is used to compute values for a given

policy π

• Control methods aim to find the optimal policy

• In this case, the behavior policy will have to balance two

important tasks:

– Explore the environment in order to get information

– Exploit the existing knowledge, by taking the action that

currently seems best

November 23, 2006 24 COMP-424 Lecture 23

Exploration

• In order to obtain the optimal solution, the agent must try all

actions

• Simplest exploration scheme: ǫ-greedy

– With probability 1− ǫ choose the action which currently

appears best

– With probability ǫ choose an action uniformly randomly

• Much research is done in this area!

November 23, 2006 25 COMP-424 Lecture 23

TD-Gammon (Tesauro, 1992-1995)

Vt+1− Vt

hidden units (40-80)

backgammon position (198 input units)

predicted probability
of winning, Vt

TD error,

.

.

.

white pieces move
 counterclockwise

1 2 3 4 5 6 7 8 9 10 11 12

18 17 16 15 14 13192021222324

 black pieces
move clockwise

November 23, 2006 26 COMP-424 Lecture 23

TD-Gammon: Training Procedure

Immediate reward:

• +100 if win

• -100 if lose

• 0 for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

November 23, 2006 27 COMP-424 Lecture 23

The Power of Learning from Experience

• Expert examples are expensive and scarce

• Experience is cheap and plentiful!

November 23, 2006 28 COMP-424 Lecture 23

Applying Reinforcement Learning to Chess

• TD does not replace search, it gives a way for computing value

functions

• Useful trick: instead of evaluating state before your move,

evaluate the state after your move (called afterstate)

• This makes it easier to choose moves

• Exploration is very important, because the game is deterministic

and self-play can get into behavior loops.

• Example: KnightCap (Baxter Tridgell & Weaver, 2000)

November 23, 2006 29 COMP-424 Lecture 23

Success Stories

• TD-Gammon (Tesauro, 1992)

• Elevator dispatching (Crites and Barto, 1995): better than industry

standard

• Inventory management (Van Roy et. al): 10-15% improvement over

industry standards

• Job-shop scheduling for NASA space missions (Zhang and Dietterich,

1997)

• Dynamic channel assignment in cellular phones (Singh and Bertsekas,

1994)

• Robotic soccer (Stone et al, Riedmiller et al...)

• Helicopter control (Ng, 2003)

• Modelling neural reward systems (Schultz, Dayan and Montague, 1997)

November 23, 2006 30 COMP-424 Lecture 23

November 23, 2006 31 COMP-424 Lecture 23

November 23, 2006 32 COMP-424 Lecture 23

Summary

• Reinforcement learning can be used to learn value functions

directly from interaction with an environment

• Monte Carlo methods use samples of the actual return

• TD methods use just samples of the next transition!

• Both converge in the limit, but TD is usually faster

• It is easy (algorithmically) to combined RL with function

approximation

• In this case, it is much harder to establish the theoretical

properties of the algorithms, but they often work well in practice.

November 23, 2006 33 COMP-424 Lecture 23

