Lecture 23: Reinforcement Learning

e MDPs revisited

e Model-based learning

e Monte Carlo value function estimation
e Temporal-difference (TD) learning

e EXploration

November 23, 2006 1 COMP-424 Lecture 23

Recall: Markov Decision Processes

0.8 0.2

n=Do Nothing
i = Apply to industry
(V) r=+10 9 = Apply to grad schoc

o a = Apply to academia
r=-1 \/(4).5 : _

0.5

r=-0.

Grad Schoo? Academ|

(G) \) % (A) D

0.1

A set of states S

A set of actions A

Expected rewards R(s, a)
Transition probabilities 1°(s, a, s’)

Discount factor y

November 23, 2006 2 COMP-424 Lecture 23

Recall: Policy Evaluation Problem

® Suppose someone told us a policy for selecting actions,

T: 5 xA—|0,1]
e How much return do we expect to get if we use it to behave?

V7(s) = Ex|[Rt|st = s| = EW[Z Ve plse = 3]
k=1

e |f we knew this, we could then improve the policy (e.g., using

policy iteration)

November 23, 2006 3 COMP-424 Lecture 23

Iterative Policy Evaluation

1. Start with some initial guess Vj

2. During every iteration k, update the values of all states:

Vit+1(s) «— ZW(S, a) <R(5, a) + ’}/ZT(S, a, S/)Vk(s’)> , Vs

S

3. Stop when the maximum change between two iterations is
smaller than a desired threshold (the values stop changing)
The value of one state is updated based on the values of the states

that can be reached from it

November 23, 2006 4 COMP-424 Lecture 23

How Is Learning Tied with Dynamic Programming?

e Observe transitions in the environment, learn an approximate
model R(s,a),T(s,a,s’)
— Use maximum likelihood to compute probabilities
— Use supervised learning for the rewards

e Pretend the approximate model is correct and use it for any
dynamic programming method

e This approach is called model-based reinforcement learning

e Many believers, especially in the robotics community

November 23, 2006 5 COMP-424 Lecture 23

Monte Carlo Methods

® Suppose we have an episodic task: the agent interacts with the
environment in trials or episodes, which terminate at some point
— E.g. game playing

e The agent behaves according to some policy 7 for a while,
generating several trajectories.

e How can we compute V" ?

November 23, 2006 6 COMP-424 Lecture 23

Monte Carlo Methods

® Suppose we have an episodic task: the agent interacts with the
environment in trials or episodes, which terminate at some point

e The agent behaves according to some policy 7 for a while,
generating several trajectories.

e How can we compute V" ?

e Compute V™ (s) by averaging the observed returns after s on

the trajectories in which s was visited.

November 23, 2006 7 COMP-424 Lecture 23

Implementation of Monte Carlo Policy Evaluation

Let V,+1 be the estimate of the value from some state s after
observing n + 1 trajectories starting at s.

n+1 n
1 1
+1] ;:1: n+1(i§:1ﬁ + Rp+41)

n

= 1iR-+ LR
— - 1 _|_1 n+1

1
n+1 n+1 +l _l_n—l—l(+l)

If we do not want to keep counts of how many times states have

been visited, we can use a learning rate version:

V(st) «— V(se) + a(Re — V(st))

November 23, 2006 8 COMP-424 Lecture 23

What If State Space Is Too Large ?

® Represent the state as a vector of input variables
® Represent V' as a linear/polynomial function, or as a neural
network

e Use R; — V(s¢) as the error signal’

November 23, 2006 9 COMP-424 Lecture 23

Temporal-Difference (TD) Prediction

e Monte Carlo uses as a target estimate for the value function the

actual return, R;:
Vi(st) «— V(st) + a[Ry — V(st)]

e The simplest TD method, TD(0), uses instead an estimate of the

return:
V(st) < V(st) + alrit1 + 9V (st+1) — V(st)]

If V'(s¢+1) were correct, this would be like a dynamic

programming target!

November 23, 2006 10 COMP-424 Lecture 23

TD Is Hybrid between Dynamic Programming and Monte Carlo!

e Like DP, it bootstraps (computes the value of a state based on
estimates of the successors)

e Like MC, it estimates expected values by sampling

November 23, 2006 11 COMP-424 Lecture 23

TD Learning Algorithm

1. Initialize the value function, V' (s) = 0, Vs
2. Repeat as many times as wanted:
(a) Pick a start state s for the current trial
(b) Repeat for every time step ¢:
I. Choose action a based on policy 7w and the current state s
ii. Take action a, observed reward r and new state s’
iii. Compute the TD error: § < r +~V (s") — V(s)

Iv. Update the value function:
V(s) «— V(s)+ asd

V. § «— §'

vi. If s’ is not a terminal state, go to 2b

November 23, 2006 12 COMP-424 Lecture 23

Example

Suppose you start will all 0 guesses and observe the following
episodes:

e B/1

e B/1

e B/1

e B/1

e B0

e A,0; B (reward not seen yet)
What would you predict for V' (B)? What would you predict for
V(A)?

November 23, 2006 13 COMP-424 Lecture 23

Example: TD vs Monte Carlo

e For B, itisclearthat V(B) = 4/5.

e |f you use Monte Carlo, at this point you can only predict your
initial guess for A (which is 0)

e If you use TD, at this point you would predict 0 + 4 /5! And you

would adjust the value of A towards this target.

November 23, 2006 14 COMP-424 Lecture 23

Example (continued)

Suppose you start will all 0 guesses and observe the following
episodes:

e B/1

e B1

e B1

e B/1

e B0

e AO:BO
What would you predict for V' (B)? What would you predict for
V(A)?

November 23, 2006 15 COMP-424 Lecture 23

Example: Value Prediction

e The estimate for B would be 4/6

e The estimate for A, if we use Monte Carlo is 0; this minimizes
the sum-squared error on the training data

e |f you were to learn a model out of this data and do dynamic
programming, you would estimate the A goes to B, so the value
of A would be 0 +4/6

e TD is an incremental algorithm: it would adjust the value of A
towards 4 /5, which is the current estimate for B (before the
continuation from B is seen)

e This is closer to dynamic programming than Monte Carlo

e TD estimates take into account time sequence

November 23, 2006 16 COMP-424 Lecture 23

Example: Eligibility Traces

e Suppose you estimated V (B) = 4/5, then saw A, 0, B, 0.

e Value of A is adjusted right away towards 4/5

e But then the value of B is decreased from 4 /5 to something like
4/6

e |t would be nice to propagate this information to A as well!

November 23, 2006 17 COMP-424 Lecture 23

Eligibility Traces (TD(\))

e On every time step ¢, we compute the TD error:
0t = Teq1 + YV (st41) — V(S¢t)

e Shout 0; backwards to past states
e The strength of your voice decreases with temporal distance by

v\, where A € [0, 1] is a parameter

November 23, 2006 18 COMP-424 Lecture 23

Advantages

e No model of the environment is required! TD only needs
experience with the environment.

e On-line, incremental learning:
— Can learn before knowing the final outcome
— Less memory and peak computation are required

e Both TD and MC converge (under mild assumptions), but TD

usually learns faster.

November 23, 2006 19 COMP-424 Lecture 23

Large State Spaces: Adapt Supervised Learning Algorithms

e A training example has an input and a target output

® The error is measured based on the difference between the

actual output and the desired (target) output

Y

Training Info: Desired (target) Output

| nputs Supervised Outputs
— | cani ng —
November 23, 2006 20 COMP-424 Lecture 23

Value-Based Methods

We will use a function approximator to represent the value function
e The input is a description of the state
e The output is the predicted value of the state

e The target output comes from the TD update rule: the target is

rev1 + YV (St+1)

November 23, 2006 21 COMP-424 Lecture 23

On-line Gradient Descent TD

1. Initialize the weight vector of the function approximator w

2. Pick a start state s

3. Repeat for every time step ¢:
(a) Choose action a based on policy ™ and the current state s
(b) Take action a, observe immediate reward r and new state s’
(c) Compute the TD error: § < r + vV (s") — V (s)
(d) Update the weight vector: w «— w + adVV (s)

(e) s« s

November 23, 2006 22 COMP-424 Lecture 23

Observations

e For linear function approximators, the gradient is just the input
feature vector
e [or neural networks, this algorithm reduces to running

backpropagation with TD error at the output

November 23, 2006 23 COMP-424 Lecture 23

RL Algorithms for Control

e TD-learning (as above) is used to compute values for a given
policy 7

e Control methods aim to find the optimal policy

e In this case, the behavior policy will have to balance two
Important tasks:
— Explore the environment in order to get information

— Exploit the existing knowledge, by taking the action that
currently seems best

November 23, 2006 24 COMP-424 Lecture 23

Exploration

e |n order to obtain the optimal solution, the agent must try all

actions
e Simplest exploration scheme: e-greedy
— With probability 1 — € choose the action which currently
appears best
— With probability e choose an action uniformly randomly

® Much research is done in this area!

November 23, 2006 25 COMP-424 Lecture 23

TD-Gammon (Tesauro, 1992-1995)

predicted probability
of winning, V;

TD error, Viyq— Vi —

hidden units (40-80)

backgammon position (198 input units)

-
white pieces move
24 23 22 21 20% 18 éw 15 141i CounterCIOCkWISe

°

58 8 8ot |
12 34 5 6 7 8 9 10 11 12 black pieces
move clockwise

November 23, 2006

26

COMP-424 Lecture 23

TD-Gammon: Training Procedure

Immediate reward:
e +100 if win
e -100 if lose

e (O for all other states

Trained by playing 1.5 million games against itself

Now approximately equal to best human player

November 23, 2006 27 COMP-424 Lecture 23

The Power of Learning from Experience

20% TD-Gammon
self-pla

Tesauro, 1992

performance
against

gammaontool / Neurogam mon
same network, but
50% — trained from 15,000

expent-labeled examples

I I I I I
0 10 20 40 a0

hidden units

e EXxpert examples are expensive and scarce

e EXxperience is cheap and plentiful!

November 23, 2006 28 COMP-424 Lecture 23

Applying Reinforcement Learning to Chess

e TD does not replace search, it gives a way for computing value
functions

e Useful trick: instead of evaluating state before your move,
evaluate the state after your move (called afterstate)

e This makes it easier to choose moves

e EXxploration is very important, because the game is deterministic
and self-play can get into behavior loops.

e Example: KnightCap (Baxter Tridgell & Weaver, 2000)

November 23, 2006 29 COMP-424 Lecture 23

Success Stories

TD-Gammon (Tesauro, 1992)

Elevator dispatching (Crites and Barto, 1995). better than industry
standard

Inventory management (Van Roy et. al): 10-15% improvement over
industry standards

Job-shop scheduling for NASA space missions (Zhang and Dietterich,
1997)

Dynamic channel assignment in cellular phones (Singh and Bertsekas,
1994)

Robotic soccer (Stone et al, Riedmiller et al...)

Helicopter control (Ng, 2003)

Modelling neural reward systems (Schultz, Dayan and Montague, 1997)

November 23, 2006 30 COMP-424 Lecture 23

Dopamine
Neurons Signal
"Error/Change”
in Prediction of

Reward

T I N AT AL

3 P 1'.'.."'- A : | I .'*‘.:' 1'-.r- Vo LR

November 23, 2006

31 COMP-424 Lecture 23

Computation
Theoretical

TD Errors

Reward Unexpected

Reward |_|
Value .
TD error I_I

Reward Expected
Cue | |

Value f’/_

TD error k

Reward Absent

Value

TD error k

November 23, 2006

32 COMP-424 Lecture 23

Summary

e Reinforcement learning can be used to learn value functions
directly from interaction with an environment

e Monte Carlo methods use samples of the actual return

e TD methods use just samples of the next transition!

e Both converge in the limit, but TD is usually faster

e [t is easy (algorithmically) to combined RL with function
approximation

® |n this case, it is much harder to establish the theoretical

properties of the algorithms, but they often work well in practice.

November 23, 2006 33 COMP-424 Lecture 23

