
Lecture 18: Introduction to function approximation.
Linear approximators. Gradient descent

• Function approximation

• Linear approximators

• Polynomial approximators

• Overfitting

• Gradient descent

COMP-424, Lecture 18 - March 25, 2013 1

Recall from last time

• Reinforcement learning can help us learn a good way of behaving in the
face of uncertainty

• But if the value function is represented as a table, we will be restricted
to small problems!

– Not enough memory
– It would take a long time to visit (and get data for) all states

• Function approximation provides a solution in such cases.

COMP-424, Lecture 18 - March 25, 2013 2

Main idea

• Represent the state as a set of features φ(s)

E.g. In a game like Odd, binary values to encode the content of the
board and different piece configurations

• Approximate the value function V (s) as a function of these features and
a set of parameters

• Learn good values for the parameters

• This helps learn a heuristic function to be used in further search

COMP-424, Lecture 18 - March 25, 2013 3

Classic function approximation / supervised learning

• Given: a set of labeled examples of the form x1 x2 . . . xn, y, where xi
are values for input variables and y is the desired output

• We want to learn: a function f : X1 × X2 × · · · × Xn → Y, which maps
the input variables onto the output domain

• For the case of utilities, Y = R (we want to predict real numbers), and
X1, . . .Xn are the domains of the random variables describing states and
actions

• But this problem formulation is applicable in other situations as well.

COMP-424, Lecture 18 - March 25, 2013 4

Example: A data set for supervised learning
Cell Nuclei of Fine Needle Aspirate

• Cell samples were taken from tumors in breast cancer patients before
surgery, and imaged

• Tumors were excised

• Patients were followed to determine whether or not the cancer recurred,
and how long until recurrence or disease free

COMP-424, Lecture 18 - March 25, 2013 5

Example (continued)

Wisconsin Breast Tumor data set from UC-Irvine Machine Learning
repository.

• Thirty real-valued variables per tumor.

• Two variables that can be predicted:

– Outcome (R=recurrence, N=non-recurrence)
– Time (until recurrence, for R, time healthy, for N).

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .

COMP-424, Lecture 18 - March 25, 2013 6

Terminology

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .

• Columns are called input variables or features or attributes

• The outcome (tumor recurrent or not) and time, which we are trying to
predict, are called output variables or targets

• A row in the table is called training example or instance

• The whole table is called (training) data set.

COMP-424, Lecture 18 - March 25, 2013 7

Prediction problems

tumor size texture perimeter . . . outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
. . .

• The problem of predicting the recurrence is called (binary) classification

• The problem of predicting the time is called regression

COMP-424, Lecture 18 - March 25, 2013 8

More formally
tumor size texture perimeter . . . outcome time

18.02 27.6 117.5 N 31

17.99 10.38 122.8 N 61

20.29 14.34 135.1 R 27

. . .

• A training example i has the form: 〈xi,1 . . . xi,n, yi〉 where n is the
number of attributes (30 in our case).

• We will use the notation xi to denote the column vector with elements
xi,1, . . . xi,n.

• The training set D consists of m training examples

• Let X = X1 × · · · × Xn denote the space of input values

• Let Y denote the space of output values

COMP-424, Lecture 18 - March 25, 2013 9

Supervised learning problem

Given a data set D = X × Y, find a function:

h : X 7→ Y

such that h(x) is a “good predictor” for the value of y.

h is called a hypothesis

• If Y = R, this problem is called regression

• If Y is a finite discrete set, the problem is called classification

• If Y has 2 elements, the problem is called binary classification or concept
learning

COMP-424, Lecture 18 - March 25, 2013 10

Example: What hypothesis class should we pick?

x y

0.86 2.49
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44 0.87
-0.43 0.02
-1.10 -0.12
0.40 1.81
-0.96 -0.83
0.17 0.43

COMP-424, Lecture 18 - March 25, 2013 11

Linear hypothessis

• Suppose y was a linear function of x:

hw(x) = w0 + w1x1 + · · ·+ wnxn

• wi are called parameters or weights

• To simplify notation, we always add an attribute x0 = 1 to the other n
attributes (also called bias term or intercept term):

hw(x) =

n∑
j=0

wjxj = w · x

where w and x are vectors of size n+ 1.

How should we pick w?

COMP-424, Lecture 18 - March 25, 2013 12

Error minimization!

• Intuitively, w should make the predictions of hw close to the true values
y on the data we have

• Hence, we will define an error function or cost function to measure how
much our prediction differs from the ”true” answer

• We will pick w such that the error function is minimized

How should we choose the error function?

COMP-424, Lecture 18 - March 25, 2013 13

Least mean squares (LMS)

• Main idea: try to make hw(x) close to y on the examples in the training
set

• We define a sum-of-squares error function

J(w) =
1

2

m∑
i=1

(hw(xi)− yi)2

• We will choose w such as to minimize J(w)

• One way to do it: compute w such that:

∂

∂wj
J(w) = 0, ∀j = 0 . . . n

COMP-424, Lecture 18 - March 25, 2013 14

A bit of algebra

∂

∂wj
J(w) =

∂

∂wj

1

2

m∑
i=1

(hw(xi)− yi)2

=
1

2
· 2

m∑
i=1

(hw(xi)− yi)
∂

∂wj
(hw(xi)− yi)

=

m∑
i=1

(hw(xi)− yi)
∂

∂wj

(
n∑

l=0

wlxi,l − yi

)

=

m∑
i=1

(hw(xi)− yi)xi,j

Setting all these partial derivatives to 0, we get a system with (n + 1)
equations and (n+ 1) unknowns.

COMP-424, Lecture 18 - March 25, 2013 15

More generally: Steps to solving a learning problem

1. Decide what data will be collected, and how it will be encoded

• This defines the input space X , and the output space Y.

2. Choose a class of hypotheses/representations H .

• E.g, linear functions

3. Choose an error function (cost function) to define the best hypothesis

• E.g., Least mean squares

4. Choose an algorithm for searching efficiently through the space of
hypotheses.

• E.g. Taking the derivative of the error function wrt the parameters
of the hypothesis, setting to 0 and solving the resulting system of
equations

COMP-424, Lecture 18 - March 25, 2013 16

Synthetic example: Data and line y = 1.60x+ 1.05

x

y

COMP-424, Lecture 18 - March 25, 2013 17

Polynomial fits

• Suppose we want to fit a higher-degree polynomial to the data.

E.g., y = w2x
2 + w1x

1 + w0

• Suppose for now that there is a single input variable x

• How do we do it?

• Answer: This is still a linear function with respect to the weights!

The only difference is that we have more inputs now (x2 can be treated
as an additional input).

• If we have more than one input, cross-factors can also be considered.

COMP-424, Lecture 18 - March 25, 2013 18

Data and curve y = 0.68x2 + 1.74x+ 0.73

x

y

Is this a better fit to the data?

COMP-424, Lecture 18 - March 25, 2013 19

Order-3 fit

x

y

Is this a better fit to the data?

COMP-424, Lecture 18 - March 25, 2013 20

Order-4 fit

x

y

Is this a better fit to the data?

COMP-424, Lecture 18 - March 25, 2013 21

Order-5 fit

x

y

Is this a better fit to the data?

COMP-424, Lecture 18 - March 25, 2013 22

Order-6 fit

x

y

Is this a better fit to the data?

COMP-424, Lecture 18 - March 25, 2013 23

Order-7 fit

x

y

Is this a better fit to the data?

COMP-424, Lecture 18 - March 25, 2013 24

Order-8 fit

x

y

Is this a better fit to the data?

COMP-424, Lecture 18 - March 25, 2013 25

Order-9 fit

x

y

Is this a better fit to the data?

COMP-424, Lecture 18 - March 25, 2013 26

Overfitting

• A general, HUGELY IMPORTANT problem for all machine learning
algorithms

• We can find a hypothesis that predicts perfectly the training data but
does not generalize well to new data

• E.g., a lookup table!

• We are seeing an example of this phenomenon here: if we have a lot of
parameters (weights), the hypothesis ”memorizes” the data points, but
is wild everywhere else.

COMP-424, Lecture 18 - March 25, 2013 27

Overfitting more formally

• Every hypothesis has a ”true” error (measured on all possible data items
we could ever encounter)

• But since we do not have all the data, in order to decide what is a good
hypothesis, we measure the error on the training set

• Suppose we compare hypotheses h1 and h2 on the training set, and h1
has lower training error

• If h2 has lower true error than h1, our algorithm is overfitting.

• How can we estimate the true error?

COMP-424, Lecture 18 - March 25, 2013 28

Back to our example

• The d-degree polynomial with d = 8 has zero training error!

• But by looking at the data and the different hypotheses, we can see that
d = 1 and d = 2 are better fits (we suspect they would have lower true
error)

• How can we choose the best d for an order-d polynomial fit to the data?

COMP-424, Lecture 18 - March 25, 2013 29

Leave-one-out cross-validation

• Leave out one instance from the training set, to estimate the true
prediction error for the best order-d fit for d ∈ {1, 2, . . . , 9}.
• Use all the other data items to find w

• Choose the d with lowest estimated true prediction error (i.e., lowest
error on the instance that was not used during training)

COMP-424, Lecture 18 - March 25, 2013 30

Estimating true error for d = 1

Iter Dtrain Dvalid Errortrain Errorvalid
1 D − {(0.86, 2.49)} (0.86, 2.49) 0.4928 0.0044
2 D − {(0.08, 0.83)} (0.09, 0.83) 0.1995 0.1869
3 D − {(−0.85,−0.25)} (−0.85,−0.25) 0.3461 0.0053
4 D − {(0.87, 3.10)} (0.87, 3.10) 0.3887 0.8681
5 D − {(−0.44, 0.87)} (−0.44, 0.87) 0.2128 0.3439
6 D − {(−0.43, 0.02)} (−0.43, 0.02) 0.1996 0.1567
7 D − {(−1.10,−0.12)} (−1.10,−0.12) 0.5707 0.7205
8 D − {(0.40, 1.81)} (0.40, 1.81) 0.2661 0.0203
9 D − {(−0.96,−0.83)} (−0.96,−0.83) 0.3604 0.2033

10 D − {(0.17, 0.43)} (0.17, 0.43) 0.2138 1.0490
mean: 0.2188 0.3558

COMP-424, Lecture 18 - March 25, 2013 31

Cross-validation results

d Errortrain Errorvalid
1 0.2188 0.3558
2 0.1504 0.3095
3 0.1384 0.4764
4 0.1259 1.1770
5 0.0742 1.2828
6 0.0598 1.3896
7 0.0458 38.819
8 0.0000 6097.5

• Optimal choice: d = 2. Overfitting for d > 2

COMP-424, Lecture 18 - March 25, 2013 32

Cross-validation

• A general procedure for estimating the ”true” error of a predictor

• The available labeled data is split into two parts

– A training set, which is used to select a hypothesis h from the desired
class H

– A test set, which is used after h is found, to figure out how good it is.

• It is essential that the testing set be untouched during the process of
looking for h

COMP-424, Lecture 18 - March 25, 2013 33

Recall: Typical overfitting plot

M

E
R
M
S

0 3 6 9
0

0.5

1
Training
Test

• The training error decreases with the degree of the polynomial M , i.e.
the complexity of the hypothesis
• The testing error, measured on independent data, decreases at first, then

starts increasing
• Cross-validation helps us:

– Find a good hypothesis class (M in our case), using a validation set
of data

– Report unbiased results, using a test set, untouched during either
parameter training or validation

COMP-424, Lecture 18 - March 25, 2013 34

A different way of finding parameters

• So far, in order to find the best hypothesis h, we used the following
procedure:

1. Take the partial derivatives of the error function with respect to all
the parameters wj of the hypothesis h

2. Set the derivatives to 0; this yields a system of equations
3. Solve this system analytically

• This works great for linear hypotheses, because we get a linear system of
equations

• But what if the hypothesis class is more complicated and we cannot find
a closed-form solution?

COMP-424, Lecture 18 - March 25, 2013 35

Gradient descent

• The gradient of J at a point w can be thought of as a vector indicating
which way is “uphill”.

−10
−5

0
5

10

−10
−5

0
5

10
0

500

1000

1500

2000

w1w0

SS
Q

• If this is an error function, we want to move “downhill” on it, i.e., in the
direction opposite to the gradient

COMP-424, Lecture 18 - March 25, 2013 36

Example gradient descent traces

• For more general hypothesis classes, there may be may local optima

• In this case, the final solution may depend on the initial parameters

COMP-424, Lecture 18 - March 25, 2013 37

Gradient descent algorithm

• The basic algorithm assumes that ∇J is easily computed

• We want to produce a sequence of vectors w1,w2,w3, . . . with the goal
that:

– J(w1) > J(w2) > J(w3) > . . .
– limi→∞wi = w and w is locally optimal.

• The algorithm: Given w0, do for i = 0, 1, 2, . . .

wi+1 = wi − αi∇J(wi) ,

where αi > 0 is the step size or learning rate for iteration i.

COMP-424, Lecture 18 - March 25, 2013 38

Termination

There are many heuristics for deciding when to stop gradient descent.

1. Run until ‖∇f‖ is smaller than some threshold.

2. Run it for as long as you can stand.

3. Run it for a short time from 100 different starting points, see which one
is doing best, goto 2.

4. . . .

COMP-424, Lecture 18 - March 25, 2013 39

Convergence

• Convergence depends in part on the αi.

• If they are too large (such as constant) oscillation or “bubbling” may
occur.
(This suggests the αi should tend to zero as i→∞.)

• If they are too small, the ui may not move far enough to reach a local
minimum.

COMP-424, Lecture 18 - March 25, 2013 40

Robbins-Monroe conditions

• The αi are a Robbins-Monroe sequence if:

•
∑∞

i=0αi = +∞
•
∑∞

i=0α
2
i <∞

• E.g., αi =
1

i+1 (averaging)

• E.g., αi =
1
2 for i = 1 . . . T , αi =

1
22

for i = T + 1, . . . (T + 1) + 2T etc

• These conditions, along with appropriate conditions on f are sufficient
to ensure that convergence of the ui to a local minimum of f

COMP-424, Lecture 18 - March 25, 2013 41

Local minima

• Note that convergence is NOT to a global minimum, only to a local
minimum

• For linear function approximators using LMS error, this is not an issue,
as there is only one global minimum

• But local minima affect most other function approximators.

• If you think of f as being an error function, there is no guarantee
regarding the amount of error of the parameter vector found by gradient
descent, compared to the globally optimal solution

• Random restarting can help (like in all cases of gradient-based search).

COMP-424, Lecture 18 - March 25, 2013 42

“Batch” versus “On-line” optimization

• Often in machine learning our error function, J , is a sum of errors
attributed to each data instance (J = J1 + J2 + . . .+ Jm.)

• In batch gradient descent, the true gradient is computed at each step,
based on all data points in the training set:

∇J = ∇J1 +∇J2 + . . .∇Jm.

• In on-line gradient descent, at each iteration one instance, i ∈
{1, . . . ,m}, is chosen at random and only ∇Ji is used in the update.

• Why prefer one or the other?

COMP-424, Lecture 18 - March 25, 2013 43

“Batch” versus “On-line” optimization

• Batch is simple, repeatable (there is no randomness in the algorithm)

• On-line:

– Requires less computation per step.
– Randomization may help escape poor local minima.
– Allows working with a stream of data, rather than a static set (hence

“on-line”).

COMP-424, Lecture 18 - March 25, 2013 44

Batch gradient descent for linear regression

• Start with an initial guess for w

• Repeatedly change w to make J(w) smaller:

wj ← wj − α
∂

∂wj
J(w), ∀j = 0 . . . n

• For linear hypotheses, we get:

wj ← wj + α

m∑
i=1

(yi − hw(xi))xi,j

• This method is also known as LMS update rule or Widrow-Hoff learning
rule

COMP-424, Lecture 18 - March 25, 2013 45

On-line (incremental) gradient descent

1. Sample training example 〈x, y〉
2. Update the weights based on this example:

wj ← wj + α(y − hw(x))xj, , ∀j = 0 . . . n

3. Repeat at will

Advantages:

• Better for large data sets

• Often faster than batch gradient descent

• Less prone to local minima

COMP-424, Lecture 18 - March 25, 2013 46

Temporal-difference learning with function approximation

On every transition form s to s′ with reward r:

• Compute the features φj(s), φj(s
′)

• Compute the values V (s)←
∑

j wjφj(s), V (s′)←
∑

j wjφj(s
′)

• Compute the TD-error δ ← r + γV (s′)− V (s)

• Update the weights based on this example:

wj ← wj + αδφj(s), , ∀j = 0 . . . n

In other words, we used the TD-error instead of the “supervised” error

COMP-424, Lecture 18 - March 25, 2013 47

Summary

• We can fit linear and polynomial functions by solving a system of linear
equations

• Alternatively, we can do gradient descent with a learning rate parameter

• We can use cross-validation to choose the best order of polynomial to fit
our data.

• Issue: How many coefficients does an order-d polynomial have if there
are two input variables? m input variables?

– Often, one will use powers of individual input variables but no cross
terms, or only select cross-terms (based on domain knowledge).

COMP-424, Lecture 18 - March 25, 2013 48

