Lecture 16: Markov Decision Processes. Policies and
value functions.

e Markov decision processes

e Policies and value functions

e Dynamic programming algorithms for evaluating policies and optimizing
policies

e |ntroduction to learning

COMP-424, Lecture 16 - March 13, 2013 1

Recall: Markov Decision Processes (MDPs)

e Finite set of states S' (we will lift this later)
e Finite set of actions A

e ~ = discount factor for future rewards (between 0 and 1, usually close
to 1). Two possible interpretations:

— At each time step there is a 1 — v chance that the agent dies, and
does not receive rewards afterwards
— Inflation rate: if you receive the same amount of money in a year, it

will be worth less

e Markov assumption: s;11 and r;41 depend only on s; and a; but not on
anything that happened before time ¢

COMP-424, Lecture 16 - March 13, 2013 2

Recall: Models for MDPs

e Because of the Markov property, an MDP can be completely described
by:
— Reward functionr : S x A — R
ro(s) = the immediate reward if the agent is in state s and takes

action a
This is the short-term utility of the action

— Transition model (dynamics): T: S x A x S — [0, 1]
T.(s,s") = probability of going from s to s’ under action a

To(s,s') = P(sg11 = §'|sy = s,a; = a)

e [hese form the model of the environment

COMP-424, Lecture 16 - March 13, 2013 3

Recall: Discounted returns

e The discounted return R; for a trajectory, starting from time step ¢, can
be defined as:

O
2 ttk—1
Ry =1 +yreae + 7y Tt+3—|—“°:E ’Y+ Ttk
k=1

Discount factor v < 1 ensures that the return is finite, assuming that
rewards are bounded.

COMP-424, Lecture 16 - March 13, 2013 4

Example: Mountain-Car

GOAL

j Gravity

e States: position and velocity
e Actions: accelerate forward, accelerate backward, coast
e \We want the car to get to the top of the hill as quickly as possible

e How do we define the rewards? What is the return?

COMP-424, Lecture 16 - March 13, 2013

Example: Mountain-Car

GOAL

e States: position and velocity

e Actions: accelerate forward, accelerate backward, coast

e Two reward formulations:
1. reward = —1 for every time step, until car reaches the top
2. reward = 1 at the top, 0 otherwise v < 1

e In both cases, the return is maximized by minimizing the number of steps
to the top of the hill

COMP-424, Lecture 16 - March 13, 2013 6

Example: Pole Balancing

— v —

e \We can push the cart along the track

e The goal is to avoid failure: pole falling beyond a given angle, or cart
hitting the end of the track

e \What are the states, actions, rewards and return?

COMP-424, Lecture 16 - March 13, 2013

Example: Pole Balancing

— v —

e States are described by 4 variables: angle and angular velocity of the
pole relative to the cart, position and speed of cart along the track

e We can think of 3 possible actions: push left, push right, do nothing

e Episodic task formulation: reward = +1 for each step before failure

= return = number of steps before failure

e Continuing task formulation: reward = -1 upon failure, 0 otherwise,
v <1
= return = —~¥ if there are k steps before failure

COMP-424, Lecture 16 - March 13, 2013 8

Formulating Problems as MDPs

e The rewards are quite “objective” (unlike, e.g., heuristics), they are
intended to capture the goal for the problem

e Often there are several ways to formulate a sequential decision problem
as an MDP

e |t is important that the state is defined in such a way that the Markov
property holds

e Sometimes we may start with a more informative or lenient reward
structure in the beginning, then change it to reflect the real task

e In psychology/animal learning, this is called shaping

COMP-424, Lecture 16 - March 13, 2013 9

Formulating Games as MDPs

e Suppose you played a game against a fixed opponent (possibly
stochastic), which acts only based on the current board

e We can formulate this problem as an MDP by making the opponent part
of the environment

e The states are all possible board positions for your player

e The actions are the legal moves in each state where it is your player's
turn

e |f we do not care about the length of the game, then v =1

e Rewards can be +1 for winning, —1 for losing, 0 for a tie (and 0
throughout the game)

e But it would be hard to define the transition probabilities!

e Later we will talk about how to learn such information from
data/experimentation

COMP-424, Lecture 16 - March 13, 2013 10

Policies

e The goal of the agent is to find a way of behaving, called a policy (plan
or strategy) that maximizes the expected value of the return, E|R|,Vt

e A policy is a way of choosing actions based on the state:

— Stochastic policy: in a given state, the agent can “roll a die” and
choose different actions

m: 5 xA—|0,1], 7(s,a) = P(a; = als; = s)

— Deterministic policy: in each state the agent chooses a unique action
m:5—= A, 7(s)=a

COMP-424, Lecture 16 - March 13, 2013 11

Example: Career Options

n=Do Nothing
U loyed) i 0.6 | Indust 1 = Apply to industry
n a = Apply to academia
r=_1 \/) 5

= 0.5
Y ' 0.1
Grad School 0.9 »{Academia
(G) O 4 (A) r=+1

0.1

What is the best policy?

COMP-424, Lecture 16 - March 13, 2013 12

Value Functions

e Because we want to find a policy which maximizes the expected return,

it is a good idea to estimate the expected return

e Then we can search through the space of policies for a good policy

e Value functions represent the expected return, for every state, given a

certain policy

e Computing value functions is an intermediate step towards computing

good policies

COMP-424, Lecture 16 - March 13, 2013

13

State Value Function

e The state value function of a policy 7 is a function V™ : § — R

e The value of state s under policy m is the expected return if the agent
starts from state s and picks actions according to policy 7

V™(s) = E;|R¢|s; = s]

e For a finite state space, we can represent this as an array, with one entry

for every state
e We will talk later about methods used for very large or continuous state

spaces

COMP-424, Lecture 16 - March 13, 2013 14

Computing the value of policy 7

e First, re-write the return a bit:

Rt = Ti41 T Y42 T 72Tt-|—3 + .-
= T+ (rep2 + ez + o)
= i1+ R

e Based on this observation, V™ becomes:
V7(s) = Ex|Ry|sy = 8] = Ex[rip1 + yRiq1]se = §]

e Now we need to recall some properties of expectations...

COMP-424, Lecture 16 - March 13, 2013

15

Detour: Properties of expectations

e Expectation is additive: E|X +Y] = E|X]+ E|Y]
Proof: Suppose X and Y are discrete, taking values in X and Y

EX+Y] = Z (i + yi)p(wi, yi)
T, €X,y; €Y
= > @y plsy)+ Yy Y p(wi,v)
T, €X Yy €Y YEY w,EX
= Y zplz)+ Y vip(yi) = EIX] + E[Y]
T, €X yi€y

o FlcX|=cFE|X]isceRis a constant
Proof: ElcX| =} cxip(x;)=c)_, zip(z;) = cE|X]

COMP-424, Lecture 16 - March 13, 2013

16

Detour: Properties of expectations (2)

e The expectation of the product of random variables is not equal to the
product of expectations, unless the variables are independent

EIXY]= > wwplw,y)= Y zwp(@ly)py)
T, €EX,Yy; €Y T, €EX, Y, €Y

e If X and Y are independent, then p(z;|ly;) = p(x;), we can re-arrange
the sums and products and get F[X]|FE[Y] on the right-hand side

e But is X and Y are not independent, the right-hand side does not
decompose!

COMP-424, Lecture 16 - March 13, 2013 17

Going back to value functions...

e \We can re-write the value function as:

VW(S) = EW[Rt’St = S] = Eﬂ-[TH_l -+ f}/Rt—l—l‘St — S]
= FEi|riv1] + 7E[Riv1]s: = s] (by linearity of expectation)

— Z m(s,a)rqa(s) + vE|[Riy1|st = s| (by using definitions)
acA

e [he second term looks a lot like a value function, if we were to condition
on sy11 Instead of sy
e So we re-write as:

ElRiiilsi =5l =Y m(s,a) > Tu(s,s)E[Rs1]sep1 = §'

acA s’'eS

e The last term is just V™ (s')

COMP-424, Lecture 16 - March 13, 2013 18

Bellman equations for policy evaluation

e By putting all the previous pieces together, we get:

Vi(s) =Y m(s,a) [ra(s) +7) Tuls, s V(s

acEA s’'esS

e This is a system of linear equations (one for every state) whose unique

solution is V™.

e The uniqueness is ensured under mild technical conditions on the

transitions p

e So if we want to find V™, we could try to solve this system!

COMP-424, Lecture 16 - March 13, 2013

19

Iterative Policy Evaluation

e Main idea: turn Bellman equations into update rules.

1. Start with some initial guess Vj
2. During every iteration k, update the value function for all states:

Vie1(s) < Y _w(s,a) [rals) +7 Y Tuls, s)Vi(s') | ,Vs

acA s’'eS

3. Stop when the maximum change between two iterations is smaller
than a desired threshold (the values stop changing)

e This is a bootstrapping algorithm: the value of one state is updated
based on the current estimates of the values of successor states

e This is a dynamic programming algorithm
e |f you have a linear system that is very big, using this approach avoids a
big matrix inversion

COMP-424, Lecture 16 - March 13, 2013 20

Searching for a Good Policy

o We say that 7 > 7/ if V™(s) > V™ (s)Vs € S

e This gives a partial ordering of policies: if one policy is better at one
state but worse at another state, the two policies are incomparable

e Since we know how to compute values for policies, we can search through
the space of policies

e Local search seems like a good fit.

COMP-424, Lecture 16 - March 13, 2013 21

Policy Improvement

V7T(s) = Z n(s,a) | r(s,a) + 7 Z To(s, sV (s

acA s'eS

e Suppose that there is some action a*, such that:

r(s,a”) 4+ Z p(s,a*, s\ V7T(s") > V7(s)

s'eS

e Then, if we set 7(s,a*) < 1, the value of state s will increase

e This is because we replaced each element in the sum that defines V™ (s)
with a bigger value

e The values of states that can transition to s increase as well

e The values of all other states stay the same

e So the new policy using a* is better than the initial policy !

COMP-424, Lecture 16 - March 13, 2013 22

Policy iteration idea

e More generally, we can change the policy 7w to a new policy 7/, which is
greedy with respect to the computed values V'™

/ — NYT(!
7'(s) = arg max r(s,a) + %Ta(s, sHV™(s")

Then V™ (s) > V™(s),Vs
e This gives us a local search through the space of policies

e We stop when the values of two successive policies are identical

COMP-424, Lecture 16 - March 13, 2013 23

Policy Iteration Algorithm

1. Start with an initial policy 7 (e.g., uniformly random)
2. Repeat:

a) Compute V™ using policy evaluation
C V™ using poli luati
(b) Compute a new policy ;11 that is greedy with respect to V'™

until V™ = V/Ti+1

COMP-424, Lecture 16 - March 13, 2013

24

Generalized Policy lteration

evaluation

m
T 1%
n—>greedy(V)
improvement
[

>V*

%
J-E 4
e In practice, we could run policy iteration incrementally

e Compute the value just to some approximation
e Make the policy greedy only at some states, not all states

COMP-424, Lecture 16 - March 13, 2013

25

Properties of policy iteration

e |f the state and action sets are finite, there is a very large but finite
number of deterministic policies

e Policy iteration is a greedy local search in this finite set
e \We move to a new policy only if it provides a strict improvement
e So the algorithm has to terminate

e But if it is a greedy algorithm, can we guarantee an optimal solution?

COMP-424, Lecture 16 - March 13, 2013 26

Optimal Policies and Optimal Value Functions

e Our goal is to find a policy that has maximum expected utility, i.e.
maximum value

e Does policy iteration fulfill this goal?

e The optimal value function V* is defined as the best value that can be
achieved at any state:

V*(s) = max V7 (s)

T

e In a finite MDP, there exists a unique optimal value function (shown by
Bellman, 1957)

e Any policy that achieves the optimal value function is called optimal
policy
e There has to be at least one deterministic optimal policy

COMP-424, Lecture 16 - March 13, 2013 27

lllustration: A Gridworld

e T[ransitions are deterministic, as shown by arrows
e Discount factor v = 0.9
e Optimal state values give information about the shortest path to the goal

e There are ties between optimal actions, so there is an infinite number of
optimal policies

e One of the deterministic optimal policies is shown on right.

ol ¥ ol ¥ 100l Y Y | |
0 i Ol — — — —
- <= 81 gl 90 o 100
0 0
Reward values V*(s) values One optimal policy

COMP-424, Lecture 16 - March 13, 2013 28

Bellman Optimality Equation for V'*

e The value of a state under the optimal policy must be equal to the
expected return for the best action in the state:

V*i(s) = mCELiXE a1 + YV (st11) |8t = s, a0 = a

— max r(s,a)—l—’yZTa(s,s’)V*(s’)

S

by an argument very similar to the policy evaluation case

e VV* is the unique solution of this system of non-linear equations (one
equation for every state)

e The fact that there is a unique solution was proven by Bellman, and
relies on the fact that v < 1, and on an argument similar to the proof of
convergence of policy iteration from last time

COMP-424, Lecture 16 - March 13, 2013 29

Why Optimal Value Functions are Useful

e Any policy that is greedy with respect to V* is an optimal policy!

e If we know V* and the model of the environment, one step of look-ahead
will tell us what the optimal action is:

m*(s) = arg max (r(s, a) + vZTa(s, S/)V*(S/>>

S

e This is in contrast to other algorithms we studied, for which finding an
optimal solution required deep search!

e |f the values are not computed perfectly, search might still help, though
(e.g. in games)

e One way to compute optimal value functions is through policy iteration.

COMP-424, Lecture 16 - March 13, 2013 30

Computing Optimal Values: Value lteration

e Main idea: Turn the Bellman optimality equation into an update rule
(same as done in policy evaluation):

1. Start with an arbitrary initial approximation 1
2. On each iteration, update the value function estimate:

Vir1(s) < max r(s,a) + *yZTa(s, sYVie(s') |, Vs

S

3. Stop when the maximum value change between iterations is below a
threshold

e The algorithm converges (in the limit) to the true V* (almost identical
proof to policy evaluation)

COMP-424, Lecture 16 - March 13, 2013 31

lllustration: Rooms Example

e Each square is a state; black squares are walls, initial circle (left) is the

goal state
e Four actions, fail 30% of the time
e No rewards until the goal is reached, v = 0.9.

e Circles indicate the magnitude of the value of the corresponding state

(no circle means 0 value)
e Values propagate backwards from the goal

lteration #1 lteration #2 lteration #3

COMP-424, Lecture 16 - March 13, 2013

32

A More Efficient Algorithm

e Instead of updating all states on every iteration, focus on important
states

e Here, we can define important as visited often

E.g., board positions that occur on every game, rather than just once in
100 games

e Asynchronous dynamic programming:

— Generate trajectories through the MDP
— Update states whenever they appear on such a trajectory

e This focuses the updates on states that are actually possible.

COMP-424, Lecture 16 - March 13, 2013 33

How Is Learning Tied with Dynamic Programming?

e Observe transitions in the environment, learn an approximate model

A

R(s,a),Ty(s, s

— Use maximum likelihood to compute probabilities
— Use supervised learning for the rewards

e Pretend the approximate model is correct and use it for any dynamic
programming method

e This approach is called model-based reinforcement learning

e Many believers, especially in the robotics community

COMP-424, Lecture 16 - March 13, 2013 34

