
Lecture 14: Belief (Bayes) Networks

• What kinds of questions do we ask a belief network?

• Exact inference: variable elimination

• Conditional independence in Bayes nets
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Recall from last week: Belief (Bayesian) Networks

0.65
P(C|A)

C=0

A=0

A=1
0.05 0.95

0.7 0.3

C=1

P(B)

B=1 B=0

0.01 0.99

B=0,E=0
B=0,E=1
B=1,E=0
B=1,E=1

A=1 A=0
0.001 0.999
0.3
0.8

0.95

0.7

0.05

0.2

P(A|B,E)

E B

A

C

R

P(E)

E=1 E=0
0.9950.005

P(R|E)

R=1
E=0
E=1

R=0
0.99990.0001

0.35

• The nodes represent random variables

• The arcs represent “influences”

• At each node, we have a conditional probability distribution for

the corresponding variable given its parents
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Example
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How do you compute P (E = 1, A = 1, R = 1, B = 0, C = 0)?
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Queries

Graphical models can answer questions about the underlying

probability distribution:

• Unconditional probability queries: What is the probability of a

given value assignment for a subset of variables Y ? P (Y )

• Conditional probability queries: What is the probability of

different value assignments for query variables Y given

evidence about variables Z? P (Y |Z = z)

• Maximum a posteriori (MAP) queries: given evidence Z = z,

what is the most likely assignment of values to the query

variables Y :MAP (Y |Z = z) = arg maxy P (Y = y|Z = z)
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Example
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How do you compute P (B|C = 1)?
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Examples of MAP queries

• In speech recognition:

Given a speech signal, determine the sequence of words most

likely to have generated the signal.

• In text processing:

Given a paragraph, determine what the most likely topic is.

• In medical diagnosis:

Given a patient, determine the most probable diagnosis.

• In robotics:

Given sensor readings, determine the most probable location of

the robot.
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Complexity of inference

• Given a Bayesian network and a random variable X , deciding

whether P (X = x) > 0 is NP-hard.

Why?

• Bad news: there is no general inference procedure that will work

efficiently for all network configurations

• Good news: for particular families of networks, inference can be

done efficiently.
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Example

P(B|C=1)=?
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P (B|C = 1) =
P (B, C = 1)

P (C = 1)
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Naive solution

P(B|C=1)=?
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

E B

R A

C

����
����
����
����
����
����

����
����
����
����
����
����

P (B = 1, C = 1) =
X

a,r,e

P (A = a, R = r, E = e, B = 1, C = 1)

=
X

a,r,e

P (r|e)P (e)P (a|e, B = 1)P (C = 1|a)P (B = 1)

P (B = 0, C = 1) =
X

a,r,e

P (A = a, R = r, E = e, B = 0, C = 1)

=
X

a,r,e

P (r|e)P (e)P (a|e, B = 0)P (C = 1|a)P (B = 0)

Then P (C = 1) = P (B = 1, C = 1) + P (B = 0, C = 1).
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A better solution

• Re-arrange the sums slighty:

P (B, C = 1) =
X

a,r,e

P (r|e)P (e)P (a|e, B)P (C = 1|a)P (B)

=
X

a,e

P (e)P (a|e, B)P (B)P (C = 1|a)
X

r

P (r|e)

• Replace:
P

r P (r|e) = mR(e). The notation means: obtained

by summing out over R, only depends on variable e.

(Note that mR(e) = 1, but ignore that for the moment.)

• Now we have:

P (B,C = 1) =
X

a

X

e

P (e)P (a|e, B)P (C = 1|a)P (B)mR(e)

• Repeat with other hidden variables (A,E)

Instead of O(2n) factors, we have to sum over O(2kn) factors
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Basic idea of variable elimination

• We impose an ordering over the variables, with the

query variable coming last

• We maintain a list of “factors”, which depend on given variables

• We sum over the variables in the order in which they appear in

the list

• We memorize the result of intermediate computations

• This is a kind of dynamic programming
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A bit of notation

• Let Xi an evidence variable with observed value x̂i

• Let the evidence potential be an indicator function:

δ(xi, x̂i) = 1 if and only if Xi = x̂i

This way, we can turn conditionals into sums as well, e.g.

P (r|E = 1) =
X

e

P (r|e)δ(e, 1)

• This is convenient as a notation, but not efficient as a practical

implementation
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Variable elimination algorithm

1. Pick a variable ordering with query variable Y at the end of the

list

2. Initialize the active factor list with the conditional probability

distributions (tables) in the Bayes net

3. Add to the active factor list the evidence potentials δ(e, ê), for all

evidence variables E

4. For i = 1 to n

(a) Take the next variable Xi from the ordering.

(b) Take all the factors that have Xi as an argument off the

active factor list, and multiply them, then sum over all values

of Xi, creating a new factor mXi

(c) Put mXi
on the active factor list
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Example

P(B|C=1)=?
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1. Pick a variable ordering: R, E, C, A, B.

2. Initialize the active factor list and introduce the evidence:

List: P (R|E), P (E), P (B), P (A|E, B), P (C|A), δ(C, 1)

3. Eliminate R: take P (R|E) off the list, compute

mR(e) =
P

r P (r|e).

List: P (E), P (B), P (A|E, B), P (C|A), δ(C, 1),mR(E)
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Example (continued)

4. Eliminate E: mE(a, b) =
P

e
P (e)P (a|e, b)mR(e)

List: P (B), P (C|A), δ(C, 1),mE(A, B)

5. Eliminate C: mC(a) =
P

c P (c|a)δ(C, 1)

List: P (B), mE(A, B), mC(A)

6. Eliminate A: mA(b) =
P

a
mE(a, b)mC(a)

List: P (B), mA(B)

7. We compute the answers for B = 1 and B = 0, which are

P (B = 1)mA(B = 1) and P (B = 0)mA(B = 0)

respectively.

This is the answer we are looking for!
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Complexity of variable elimination

• We need at most O(n) multiplications to create one entry in a

factor (where n is the total number of variables)

• If m is the maximum number of values that a variable can take,

a factor depending on k variables will have O(mk) entries

• So it is important to have small factors!

• But the size of the factors depends on the ordering of the

variables!

• Choosing an optimal ordering is NP-complete
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DAGs and independencies

• Given a graph G, what sort of independence assumptions does

it imply? E.g. Consider the alarm network:

C

E B

R A

• In general the lack of an edge corresponds to lack of a variable

in the conditional probability distribution at a node

• But there are other independencies between variables as well:

– Is E independent f B?

– Is R independent of A?

• What variables are independent or conditionally independent in

general?
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Implied independencies

• Independencies are important because they can help us answer

queries more efficiently

• E.g. Suppose that we want to know P (R|B). Do we really need

to sum over all values of A, C, E?

C

E B

R A

• Given a Bayes net structure G, and evidence for variables Y ,

what can we say about the sets of variables X and Z?

– Evidence will propagate along paths in the graph

– If it reaches both X and Y , then they are not independent.
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A simple case: Indirect connection

YX Z

• We interpret the lack of an edge between X and Z as a

conditional independence: P (Z|X, Y ) = P (Z|Y ) and same

for X . Is this justified?

• Based on the graph structure, we have:

P (X, Y,Z) = P (X)P (Y |X)P (Z|Y )

• Hence, we have:

P (Z|X, Y ) =
P (X,Y, Z)

P (X, Y )
=

P (X)P (Y |X)P (Z|Y )

P (X)P (Y |X)
= P (Z|Y )

• Edges that are present do not imply dependence.

• Edges that are missing do imply independence.
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A more interesting case: Common cause

Z

Y

X

• Again, we interpret the lack of edge between X and Z as

conditional independence given Y . Why is this true?

P (Z|X, Y ) =
P (X,Y, Z)

P (X, Y )
=

P (Y )P (X|Y )P (Z|Y )

P (X|Y )P (Y )
= P (Z|Y )

• This is a hidden variable scenario: if Y is unknown, then X and

Z could appear to be dependent on each other
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The most interesting case: V-structure

Y

X Z

• In this case, the lacking edge between X and Z is a statement

of marginal independence

• In this case, once we know the value of Y , X is

not independent of Z

(You can check that P (Z|X, Y ) does not simplify)

• This is the case of explaining away when there are multiple,

competing explanations.
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Summary of the three cases

YX Z Z

Y

X

In both cases, the path between X and Z is open if Y is unknown,

but blocked if Y is known

Y

X Z

In this case, the path between X and Z is blocked if Y is unknown

but open if Y is known
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Bayes ball algorithm

• How can we know whether X is independent of Z given Y for a

general Bayes net with corresponding graph G?

• Algorithm (Pearl):

– Shade all nodes in the evidence set Y

– Put balls in all the nodes in X , and we let them bounce

around the graph according to the rules from the three base

cases

– Note that the balls can go in any direction along an edge!

– If any ball reaches some node in Z, then the conditional

independence assertion is not true.
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Independence in a general Bayes net

• Any network can be treated as a collection made from these

three base cases.

• Bayes ball can be used to assert the conditional independence

of different nodes given evidence

• In general, a node will be independent of the rest of the network

given:

– its parents

– its children

– its ”spouses” (other parents of its children)

These form the Markov blanket of the node.
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Example of Markov blanket

X

The red nodes are the Markov blanket for X
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Summary of inference in Bayes nets

• The complexity of inference depends a lot on the structure of

the network

– Inference can be done efficiently (polynomial time) for

tree-structured networks

– In the worst case, inference is NP-complete

• The best exact inference algorithm converts the network to a

tree, then does exact inference on the tree

• In practice, for large nets, approximate inference methods work

much better

• More about this in COMP-526.
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