Lecture 7: Logic and Planning

- Planning and representing knowledge
- Logic in general
- Propositional (Boolean) logic and its application to planning

What is planning?

- A *plan* is a collection of actions for performing some task
 - E.g., my daughter's birthday celebration
 - E.g., a conference participation
 - E.g., assembling furniture
- There are many programs that help human planners
- The goal in Al is to *generate plans automatically*

NASA's Deep Space 1

- Launched in Oct. 1998 to test technologies and perform flybys of asteroid Braille and Comet Borrelly.
- Autonav system used for autonomous navigation and finding imaging targets.
- Remote Agent system used to perform automatic fault detection and self-repair.
- First spacecraft to be controlled by AI system without human intervention.

NASA's MAPGEN System

- Planning and scheduling system used daily to generate command sequences for the Mars Exploration Rover mission.
- Uses primarily mixed- initiative planning (i.e. collaborative planning between human and robot)

Search vs. Planning

- In theory, the types of problems above could be tackled by search methods we discussed so far
- Two main difficulties arise in complex search problems:
 - Branching factor is huge!
 - Difficult to find good heuristic functions
- Ideally, we don't want to search over individual states, but over sets of states or (as seen last time) beliefs over states
- *Key idea in planning:* use a more powerful form of *knowledge representation* to describe sets of states (or similar "abstractions")

Example: Second Life

- How do we represent states in this game?
- How do we decide what to do?

Knowledge Representation

- A complete intelligent agent needs to be able to perform several tasks:
 - *Perception*: what is my state?
 - *Cognition/deliberation*: what action should I take?
 - *Action*: how do I execute the action?
- State recognition implies some form of *representation*
- Figuring out the right action implies some form of *inference*
- Two levels to think about:
 - *Knowledge level*: *what* does the agent know?
 - Implementation level: how is the knowledge represented?

Knowledge Bases

- The golden dream:
 - Tell the agent what it needs to know
 - The agent uses rules of inference to deduce consequences
- This is the *declarative* approach to building agents.

- Agents have two different parts:
 - A knowledge base, which contains a set of facts expressed in some formal, standard language
 - An *inference engine*, with general rules for deducing new facts

An Example: Wumpus World

Percepts: Breeze, Glitter, Smell

Actions: Left turn, Right turn, Forward, Grab,

Release, Shoot

Goals: Get gold back to start without entering pit or wumpus square

Environment:

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter if and only if gold is in the same square
- Shooting kills the wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up the gold if in the same square

Wumpus World Characteristics

- The world is *static*: the positions of the pits, gold, and monster do not change during the course of a game
- The actions have *deterministic* effects.
- Unlike most search problems we talked about, here the world is *partially observable*!
- The agent does not know the map from the beginning, it has to figure it out based on *local perception*

ОК			A= Agent B= Breeze S= Smell P= Pit W= Wumpus OK = Safe V = Visited G = Glitter
OK A	ок		8

Example: Getting Out of Tight Spots

Smell in $(1,1) \Rightarrow$ cannot move Can use a strategy of coercion:

- Shoot straight ahead
- Wumpus was there \Rightarrow dead \Rightarrow safe
- Wumpus was not there \Rightarrow safe

What knowledge representation supports this reasoning?

Logic

- Logics are formal languages for representing information such that conclusions can be drawn
- Logic has two components:
 - Syntax defines the sentences in the language
 - Semantics define the "meaning" of sentences
 I.e. define the truth of a sentence in a world
- E.g., the language of arithmetic

 $x+2 \ge y$ is a sentence; x2+y > i is not a sentence

 $x+2 \geq y$ is true if and only if the number x+2 is no less than the number y

 $x+2 \ge y$ is true in a world where x = 7, y = 1 $x+2 \ge y$ is false in a world where x = 0, y = 6

Types of logic

- Logics are characterized by what they commit to as "primitives"
 - Ontological commitment: *what exists*—facts? objects? time? beliefs?
 - Epistemological commitment: *what states of knowledge*?

Language Ontological Commitment		Epistemological Comm.	
Propositional logic	facts	true/false/unknown	
First-order logic	facts, objects, relations	true/false/unknown	
Temporal logic	facts, objects, relations, times	true/false/unknown	
Probability theory	facts	degree of belief 01	
Fuzzy logic	degree of truth	degree of truth 0 1	

Interpretations

- We want to have a rule for generating (or testing) new sentences that are always true
- But the truth of a sentence may depend on its interpretation!
- Formally, an *interpretation* is a way of matching objects in the world with symbols in the sentence (or in the knowledge database)
- A sentence may be true in one interpretation and false in another
- Terminology:
 - A sentence is *valid* if it is true in all interpretations
 - A sentence is *satisfiable* if it is true in at least one interpretation
 - A sentence is *unsatisfiable* if it is false in all interpretations

Entailment and Inference

$KB \models \alpha$

• Knowledge base *KB* entails sentence α if and only if α is true in all worlds where *KB* is true.

E.g., the *KB* containing "I finished AI homework" and "I am happy" entails "I finished the AI homework or I am happy"

- $KB \vdash_i \alpha$ means sentence α can be derived from KB by inference procedure i
- Desired qualities of an inference procedure *i*:
 - Soundness: *i* is sound if, whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$. In other words, we infer only necessary truths
 - Completeness: *i* is complete if, whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$. In other words, we can generate all the necessary truths

Example: Entailment in wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for *KB* assuming only pits

3 Boolean choices \Rightarrow 8 possible models

?	?		
A	в А	?	

Example: Models in wumpus world

1

۶Œ

z

Example: Knowledge base in wumpus world

• *KB* = wumpus-world rules + observations

Example: Model checking in wumpus world

- *KB* = wumpus-world rules + observations
- $a_1 = "[1,2]$ is safe", $KB \models a_1$, proved by model checking
- Model Checking works only with FINITE worlds

Example: Model checking in wumpus world

- *KB* = wumpus-world rules + observations
- $a_2 = "[2,2]$ is safe", KB does not entail a_2
- *KB* ∦ a₂

Propositional Logic: Syntax

- Propositional logic is the simplest logic.
- Syntax rules:
 - Atomic symbols l_1 , l_2 etc are sentences
 - If S is a sentence, $\neg S$ is a sentence
 - If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence
 - If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence
 - If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence
 - If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence

Propositional Logic: Semantics

• A *model* specifies true/false for each proposition symbol

E.g. *A B C True True False*

(Think of a model as a possible world in which the symbols can be evaluated)

• Rules for evaluating truth with respect to a model m:

$\neg S$	is true iff	S	is false		
$S_1 \wedge S_2$	is true iff	S_1	is true and	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true or	S_2	is true
$S_1 \Rightarrow S_2$	is true iff	S_1	is false or	S_2	is true
i.e.,	is false iff	S_1	is true and	S_2	is false
$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$	is true and	$S_2 \Rightarrow S_1$	is true

Validity and Satisfiability

- A sentence is *valid* if it is true in all models
 e.g., A ∨ ¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B
 Validity is connected to inference via the <u>Deduction Theorem</u>:
 KB ⊨ α if and only if KB ⇒ α is valid
- A sentence is *satisfiable* if it is true in some model
 e.g., A ∨ B, C
- A sentence is *unsatisfiable* if it is true in no models
 e.g., A ∧ ¬A
- Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $KB \land \neg \alpha$ is unsatisfiable This is proof by contradiction!

Two kinds of inference (proof) methods

• Model checking:

- Truth table enumeration (sound and complete for propositional logic)
- Heuristic search in model space (sound but incomplete)
- Application of inference rules:
 - Legitimate (sound) generation of new sentences from old
 - A *proof* is a sequence of inference rule applications
 - Inference rules can be used as operators in a standard search algorithm!

Propositional Inference: Truth Table Method

- Let $\alpha = A \lor B$ and $KB = (A \lor C) \land (B \lor \neg C)$
- Is it the case that $KB \models \alpha$?
- Check all possible models α must be true wherever KB is true

A	В	С	$A \lor C$	$B \lor \neg C$	KB	α
False False False	False False True	False True False				
False True True True True	<i>True False False True True</i>	<i>True False True False True</i>				

Properties of truth table method

- The truth table method is a sound and complete inference method, which checks truth in all possible models.
- But the truth table method is very inefficient! 2^n models for n literals
- There must be a more efficient way to prove sentences...

Normal Forms

- Normal forms are standardized forms for writing sentences, which will be useful if we want to apply inference rules in a uniform way
- Conjunctive Normal Form (CNF—universal) conjunction of disjunctions of literals E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)
- *Disjunctive Normal Form* (DNF—universal)

disjunction of conjunctions of literals

E.g., $(A \land B) \lor (A \land \neg C) \lor (A \land \neg D) \lor (\neg B \land \neg C) \lor (\neg B \land \neg D)$

• *Horn Form* (restricted)

conjunction of Horn clauses (clauses with ≤ 1 positive literal) E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

Often written as set of implications: $B \Rightarrow A$ and $(C \land D) \Rightarrow B$

Inference rules for propositional logic

• *Resolution* (for CNF): complete for propositional logic

$$\frac{\alpha \lor \beta, \quad \neg \beta \lor \gamma}{\alpha \lor \gamma}$$

• Modus Ponens (for Horn Form): complete for Horn KBs

$$\frac{\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

Can be used with *forward chaining* or *backward chaining*

Forward chaining

- When a new sentence p is added to the KB
 - Look for all sentences that share literals with p
 - Perform resolution
 - Add new sentences to the KB and continue
- Two important properties
 - Forward chaining is *data-driven* E.g., inferring properties and categories from new percepts
 - Forward chaining is an *eager* method: new facts are inferred as soon as possible

Backward chaining

- When a query *q* is asked:
 - If q is in the knowledge base, return true
 - Else use resolution for q with other sentences in KB, and continue from the result
- Two important properties:
 - Backward chaining is *goal-driven*: it centers the reasoning around the query begin asked
 - It is a *lazy* reasoning method: new facts are only inferred as needed, and only to the extent that they help answer the query.

Forward vs backward chaining: Which one is better?

- It depends on the problem at hand!
- Backward chaining is parsimonious in the amount of computation performed, and does not grow the knowledge base as much as forward chaining
- Backward chaining is focused on the proof that needs to be generated, so is generally more efficient
- But it does nothing until questions are asked!
- Backward chaining is usually used in proof by contradiction
- Forward chaining extends the knowledge base, and hence improves the understanding of the world
- Typically, backward chaining is used in proofs by contradiction
- Forward chaining is used in tasks where the focus is not on producing a proof, but on providing a model of the world

Other useful rules

• And-elimination:

$$\frac{\alpha_1 \wedge \dots \wedge \alpha_n}{\alpha_i, \forall i = 1, \dots n}$$

• Implication elimination:

$$\frac{\alpha \Rightarrow \beta}{\neg \alpha \lor \beta}$$

Example

- Knowledge base
 - HaveAILecture \Rightarrow (TodayIsMonday \lor TodayIsWednesday)
 - \neg TodayIsMonday
 - HaveAlLecture \lor HaveNoClass
 - HaveNoClass \Rightarrow Sad
 - $\neg \mathsf{Sad}$
- Can you infer what day it is?

Complexity of Inference

- What is the complexity of verifying the validity of a sentence of n literals? 2^n
- What if our knowledge is expressed only in terms of Horn clauses? *The inference time becomes polynomial!*
 - Every Horn clause establishes exactly one new fact
 - We can add all the new facts implied by the database in \boldsymbol{n} passes
 - This is why Horn clauses are often used in expert systems

An Example: Wumpus World

• Knowledge base:

$$\neg S_{1,1} \quad \neg S_{2,1} \quad S_{1,2} \quad \neg B_{1,1} \quad B_{2,1} \quad \neg B_{1,2}$$

• Knowledge about the environment:

$$\neg S_{1,1} \Rightarrow \neg W_{1,1} \land \neg W_{1,2} \land \neg W_{2,1}$$

$$\neg S_{2,1} \Rightarrow \neg W_{1,1} \land \neg W_{2,2} \land \neg W_{2,1} \land \neg W_{3,1}$$
$$S_{1,2} \Rightarrow W_{1,1} \lor W_{1,2} \lor W_{2,2} \lor W_{1,3}$$

• Now we can use inference rules to find out where the Wumpus is!

Summary of Propositional Logic

- The good: Propositional logic is very simple! Few rules, inference is simple
- The bad: Propositional logic is very simple! So we cannot express things in a compact way
- E.g for the wumpus world, we need propositions for ALL positions, AND ALL TIMES!
- We cannot say things like "for all squares" or "the wumpus is in one of the neighboring squares"

Planning with propositional logic

• A planning problem is described just like a search problem (states, actions/operators, goal), but the problem representation is more structured:

	Search	Planning
States	Data structures	Logical sentences
Actions	Code	Preconditions/outcomes
Goal	Goal test	Logical sentence (conjunction)
Plan	Sequence from S_0	Constraints on actions

• Natural idea: represent states using propositions, and use logical inference (forward / backward chaining) to find sequences of actions.

Planning as Satisfiability: SatPlan

- Intorduced by Kautz and Selman, 1990s, very successful method over the years
- Take a description of a planning problem and generate all possible literals, at all time slices
- Generate a humongous SAT problem
- Use a state-of-art SAT solver (eg WalkSAT) to get a plan
- Randomized SAT solvers can be used as well

Complexity of planning

- Clearly NP-hard (as it can be seen as SAT in finite-length plan case)
- But actually worse (PSPACE) if we let plan duration

GraphPlan

- Introduced by Blum and Furst in 1995, currently the state-of-art in planning algorithms
- Main idea:
 - Construct a graph that encodes constraints on possible plans
 - If a valid plan exists it will be part of this planning graph, so search only within this graph
- Planning graph can be built in polynomial time.

Problem description

- Goal is described in conjunctive form
- The preconditions of actions have to be conjunctions
- Usually operators are described in STRIPS-like notation

Planning Graph

- Two types of nodes:
 - Propositions
 - Actions

These are arranged in *levels*: propositions and action levels alternate

- Three types of edges between levels:
 - Precondition: edge from P to A if P is a precondition of A
 - Add: edge from A to P if A has P as effect
 - Delete: edge from A to $\neg P$ if A deletes P
- Action level includes actions whose preconditions are satisfied in the previous level, plus "no-op" actions (do nothing)

Example: Dinner Date

- Initial state: garbage \wedge cleanHands \wedge quiet
- Goal state: dinner \land present $\land \neg$ garbage
- Actions:
 - Cook: precondition: cleanHands; effect: dinner
 - Wrap: precondition: quiet; postcondition: present
 - Carry: effect: \neg garbage $\land \neg$ cleanHands
 - Dolly: effect: \neg garbage $\land \neg$ quiet

Example: First Level of Planning Graph

- Thicker lines correspond to doing nothing
- Action level contains <u>all</u> actions whose preconditions are satisfied
- Edges between nodes on same level indicate *mutual exclusion*

Mutual exclusion

- Two actions are *mutually exclusive (mutex)* at some stage if no valid plan could contain both at that stage
- Two actions at the same level can be mutex because of:
 - Inconsistent effects: an effect of one negates the effect of the other
 - Interference: one negates a precondition of the other
 - *Competing needs*: the actions have mutex preconditions
- Two propositions at the same level are mutex if:
 - One is a *negation* of the other
 - *Inconsistent support*: All ways of achieving the propositions are pairwise mutex

Example: Mutual Exclusions

- wrap and dolly are mutex because dolly negates the precondition of wrap
- carry and the no-op are mutex because one negates the effect of the other
- present and ¬quiet are mutex because the actions achieving them, wrap and dolly, are mutex

Constructing the Planning Graph

- Level P_1 is initialized with all the literals from the initial state
- Add an action at level A_i if all its preconditions are present in level P_i
- Add a proposition in level P_{i+1} if it is the effect of some action in level A_i (including no-ops)
- Maintain a set of exclusion relations to eliminate incompatible propositions and actions

Example: Two-level Planning Graph

Observations

- Number of propositions always increases (because all the ones from the previous level are carried forward)
- Number of actions always increases (because the number of preconditions that are satisfied increases)
- Number of propositions that are mutex decreases (because there are more ways to achieve same propositions, and not all will be mutex)
- Number of actions that are mutex decreases (because of the decrease in the mutexes between actions)
- After some time, all levels become identical: graph "levels off"
- Because there is a finite number of propositions and actions, mutexes will not reappear

Valid Plan

- A valid plan is a subgraph of the planning graph such that:
 - All goal propositions are satisfied in the last level
 - No goal propositions are mutex
 - Actions at the same level are not mutex
 - Each action's preconditions are made true by the plan
- Algorithm:
 - 1. Grow the planning graph until all goal propositions are reachable and not mutex
 - 2. If the graph levels off first, return failure (no valid plan exists)
 - 3. Search the graph for a planning graph
 - 4. If no valid plan is found add a level and try again

Example: Plan extraction

