Lecture 6: Game Playing

- Why games?
- Overview of state-of-art
- Minimax search
- Evaluation functions
- α - β pruning

COMP-424, Lecture 6 - January 23, 2013

Game Playing

- One of the oldest, most well-studied domains in AI!
- Why?
 - People like them! And are good at playing them
 - Often viewed as an indicator of intelligence
 - * State space is very large and complicated
 - * Sometimes there is stochasticity and imperfect information
 - There is a clear, clean description of the environment
 - Easy to evaluate performance!
- Samuel's checkers player first notable success

"Games are to AI as grand prix racing is to automobile design"

Types of games

- Perfect vs. imperfect information
 - Perfect: See the exact state of the game
 E.g., chess, backgammon, checkers, go, othello
 - Imperfect: Information is hidden
 E.g., Scrabble, bridge, multi-player games
- Deterministic vs. stochastic
 - Deterministic; Change in state is fully determined by player move E.g. chess

Stochastic: Change in state is partially determined by chance
 E.g. backgammon, poker

COMP-424, Lecture 6 - January 23, 2013

Human or Computer: Who is Better?

- Checkers:
 - 1994: Chinook (UofA) beat human world champion Marion Tinsley ending 42-year reign (during which he lost only 3 games!)
- Chess:
 - 1997: Deep Blue (IBM) beat world champion Gary Kasparov
 - 2002: Fritz drew with world champion Vladimir Kramnik
- Othello:
 - 1997: Logistelo (NEC Research) beat world champion Takeshi Murakami
 - Today: human champions refuse to play best computer programs (because computers are too good)
- Go:
 - \$1,000,000 prize available
 - Master-level play achieved in the last two years

Human or Computer: Who Is Better?

- Scrabble
 - 1998: Maven (UofA) beats world champion Adam Logan 9-5
 - Knowing the whole dictionary helps a lot!
- Bridge:
 - 1988: Ginsberg's program places 12th in world championships
 - Coordination with partner still very difficult
- Poker:
 - 2008: Polaris (UofA) beats some of the best on-line human players
 - Still very difficult to adapt to changing opponents
- Commercial, multi-player games
 - Very hard problems, progress slowly being made
 - Real-time, opponents change, dynamic, cannot see everything,
 - Goal is often not to beat human players, but to provide "interesting" opponents

COMP-424, Lecture 6 - January 23, 2013

Game Playing as Search

- Consider two-player, perfect information, deterministic games.
- Can we formulate them as search problems?
 - State: state of the board
 - Operators: legal moves
 - Goal: states in which the game is won/lost/drawn
 - Cost:
 - * Simple utility: +1 for winning, -1 for losing, 0 for a draw
 - * More complex cases: points won, money, ...
 - We want to *find a strategy* (i.e. a way of picking moves) that *maximizes utility*

Game Search Challenge

- Not quite the same as simple searching
- There is a malicious opponent!
 - It is trying to make things good for itself, and bad for us
 - We have to *simulate the opponent's decision*
- Main idea: utility from a single agent's perspective
 - Define a *max player* (who wants to maximize its utility)
 - And a *min player* (who wants to minimize it).

COMP-424, Lecture 6 - January 23, 2013

Minimax Search

- Expand a complete search tree, until terminal states have been reached and their utilities can be computed
- Go back up from the leaves towards the current state of the game
 - At each min node, back up the worst value among children
 - At each max node, back up the best value among children

Minimax Algorithm

Operator MinimaxDecision ()

1. For each legal operator o:

- (a) Apply the operator o and obtain the new game state s
- (b) Value[o] = MinimaxValue(s)
- 2. Return the operator with the highest value Value[o]

double MinimaxValue (s)

- 1. if isTerminal(s) return Utility(s);
- 2. For each state $s' \in \text{Successors}(s)$, Value(s') = MinimaxValue(s')
- 3. If Max is to move in s, return $\max_{s'} \text{Value}(s')$
- 4. If Min is to move in s, return $\min_{s'} \text{Value}(s')$

Properties of Minimax Search

- Complete if the game tree is finite
- Optimal against an optimal opponent Otherwise, we do not know!
- Time complexity $O(b^m)$
- Space complexity O(bm) (because search goes depth-first, and at each of the m levels we keep b candidate moves)
- Why not use minimax to solve chess for example?

For chess, $b\approx 35,\,m\approx 100$ for "reasonable" games, so an exact solution is impossible

COMP-424, Lecture 6 - January 23, 2013

11

Coping with Resource Limitations

- Suppose we have 100 seconds to make a move, and we can search $10^4 \,$ nodes per second
 - That means we have to limit the search to $10^{6}\ {\rm nodes}\ {\rm before\ choosing}\ {\rm a\ move}.$
- Standard approach:
 - Use a cutoff test (e.g. based on depth limit)
 - Use an *evaluation function* (akin to a heuristic) to estimate the value of nodes where we cut off the search
- This resembles real-time search

Evaluation Functions

- An *evaluation function* v(s) represents the "goodness" of a board state s (i.e. the chance of winning from that position)
- If the features of the board can be judged independently, then a good choice is a *weighted linear function*:

$$v(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

where s is the board state

• This can be given by the designer or learned from experience

COMP-424, Lecture 6 - January 23, 2013

13

Example: Chess

Assign a value to each piece: Pawn = 1; Knight =3; Bishop =3; etc. Score of a position is the sum of the values of all my pieces minus all opponent's pieces.

More sophisticated: Linear evaluation function $w_1f_1(s) + w_2f_2(s) + \ldots$ where, e.g.

- $w_1 = 9$ with $f_1(s) = (nr. white queens) (nr. black queens)$ etc.
- $w_2 = 12$ with $f_2(s) = nr$. of available moves (mobility)
- $w_3 = -12 f_3(s) = \text{nr}$, available moves for opponents (it is bad for the opponent to have many choices)
- . . .

- Evaluation functions help us make a decision without searching until the end of the game
- Imagine a *MinimaxCutoff* algorithm, which is the same as *MinimaxValue*, except it goes to some maximum depth m and uses the evaluation function on those nodes (instead of going to the end of the game and using the correct utility)
- How many moves can we search ahead in chess?
 - 10^6 nodes with b = 35 allows us to search m = 4 moves ahead!

α - β pruning

- Standard technique for deterministic, perfect information games
- The idea is similar to α -pruning: if a move estimate looks worse than another choice we already have, discard it
- The algorithm is like minimax, but keeps track of the best leaf value for the Max palyer (α) and the best value for the Min player (β)
- If the best move at a node cannot change, regardless of what we find by searching, then no need to search further!

COMP-424, Lecture 6 - January 23, 2013

α - β Algorithm

Instead of *MinimaxValue*, we have two functions, *MaxValue* and *MinValue*, which update the two cutoffs differently

double MaxValue(s, α , β) 1. If cutoff(s) return Evaluation(s) 2. For each s' in Successors(s) (a) $\alpha \leftarrow \max(\alpha, MinValue(s', \alpha, \beta))$ (b) If $\alpha \ge \beta$ return β 3. Return α

double MinValue(s, α , β)

If cutoff(s) return Evaluation(s)
 For each s' in Successors(s)

 (a) β ← min(β, MaxValue(s', α, β))
 (b) If α ≥ β return α

 Return β

Properties of α - β **Pruning**

- Pruning does not affect the final result!
- Good move ordering is key to the effectiveness of pruning
 - With bad move ordering complexity is $\approx O(b^m)$ (nothing pruned)
 - With *perfect ordering*, the time complexity is $\approx O(b^{m/2})$ (because we cut off the branching at every other level)
 - * Means we double the search depth for the same resources
 - * In chess (and other games) this is the difference between a novice and an expert player
 - On the average, $O(b^{3m/4})$ (if we expect to find the max or min after b/2 expansions)
 - Randomizing the move ordering can achieve the average case
 - Evaluation function can be used to give a good initial ordering for the nodes
- α - β pruning demonstrates the value of reasoning about which computations are important.

COMP-424, Lecture 6 - January 23, 2013

33

Deep Blue (IBM)

- Specialized chess processor, with special-purpose memory organization
- A very sophisticated evaluation function, with expert features and handtuned weights
- Database of opening/closing moves
- Uses a version of α - β pruning with undisclosed improvements, which allow searching some lines up to 40 ply deep.
- Can search over 200 million positions per second!
- Overall, an impressive engineering feat
- Now, several computer programs running on regular hardware are on par with human champions (e.g. Fritz).

Chinook (Schaeffer, U. of Alberta)

- Plain α - β search, performed on standard PCs
- Evaluation function based on expert features of the board
- Opening database
- Huge endgame database!

Chinook has perfect information for all checkers positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

- Only a few moves in the middle of the game were actually searched!
- They have now done an exhaustive search for checkers, and discovered that optimal play leads to a draw

COMP-424, Lecture 6 - January 23, 2013

35

Logistello (Buro, U. of Alberta)

- Opening book, continuously updated based on the games played (\approx 23000 games)
- α - β search with a *linear evaluation function*:
 - Hand-selected features
 - 1.5 million weights tuned by learning during self-play games
- Thinks during the opponent's time
- Search speed (on a Pentium-Pro 200) \approx 160,000 nodes/sec in the middle game, \approx 480,000 nodes/sec in the endgame
- $\bullet\,$ Search depth \approx 18-23 ply in the middle game
- Win/loss/draw determination at 26-22 empty squares, exact score 1-2 ply later

Drawbacks of $\alpha\text{-}\beta$

- If the *branching factor is really big*, search depth is still too limited E.g. in Go, where branching factor $b \approx 300$
- Optimal play is guaranteed against an optimal opponent if search proceeds to the end of the game
- But the opponent may not be optimal!
- If heuristics are used, this assumption turns into the opponent playing optimally *according to the same heuristic function* as the player
- This is a very big assumption! What to do if the opponent plays very differently?

COMP-424, Lecture 6 - January 23, 2013

37

Summary

- Games are a cool, realistic testbed for AI ideas
- Search is similar to A^* (using heuristics), but one needs to consider that the opponent will try to harm
- It is crucial to decide where to spend the computation effort, and prune unimportant paths
- Computers dominate many classical, perfect-information games, using $\alpha-\beta$ pruning
- However, this may not be good enough in games with very large branching factor (e.g. Go) or imperfect information / stochastic games
- Next time: Monte Carlo tree search