
Lecture 6: Game Playing

• Why games?

• Overview of state-of-art

• Minimax search

• Evaluation functions

• α-β pruning

COMP-424, Lecture 6 - January 23, 2013 1

Game Playing

• One of the oldest, most well-studied domains in AI!

• Why?

– People like them! And are good at playing them
– Often viewed as an indicator of intelligence
∗ State space is very large and complicated
∗ Sometimes there is stochasticity and imperfect information

– There is a clear, clean description of the environment
– Easy to evaluate performance!

• Samuel’s checkers player - first notable success

“Games are to AI as grand prix racing is to automobile design”

COMP-424, Lecture 6 - January 23, 2013 2

Types of games

• Perfect vs. imperfect information

– Perfect: See the exact state of the game
E.g., chess, backgammon, checkers, go, othello

– Imperfect: Information is hidden
E.g., Scrabble, bridge, multi-player games

• Deterministic vs. stochastic

– Deterministic; Change in state is fully determined by player move
E.g. chess

– Stochastic: Change in state is partially determined by chance
E.g. backgammon, poker

COMP-424, Lecture 6 - January 23, 2013 3

Human or Computer: Who is Better?

• Checkers:

– 1994: Chinook (UofA) beat human world champion Marion Tinsley
ending 42-year reign (during which he lost only 3 games!)

• Chess:

– 1997: Deep Blue (IBM) beat world champion Gary Kasparov
– 2002: Fritz drew with world champion Vladimir Kramnik

• Othello:

– 1997: Logistelo (NEC Research) beat world champion Takeshi
Murakami

– Today: human champions refuse to play best computer programs
(because computers are too good)

• Go:

– $1,000,000 prize available
– Master-level play achieved in the last two years

COMP-424, Lecture 6 - January 23, 2013 4

Human or Computer: Who Is Better?

• Scrabble

– 1998: Maven (UofA) beats world champion Adam Logan 9-5
– Knowing the whole dictionary helps a lot!

• Bridge:

– 1988: Ginsberg’s program places 12th in world championships
– Coordination with partner still very difficult

• Poker:

– 2008: Polaris (UofA) beats some of the best on-line human players
– Still very difficult to adapt to changing opponents

• Commercial, multi-player games

– Very hard problems, progress slowly being made
– Real-time, opponents change, dynamic, cannot see everything,
– Goal is often not to beat human players, but to provide “interesting”

opponents

COMP-424, Lecture 6 - January 23, 2013 5

Game Playing as Search

• Consider two-player, perfect information, deterministic games.

• Can we formulate them as search problems?

– State: state of the board
– Operators: legal moves
– Goal: states in which the game is won/lost/drawn
– Cost:
∗ Simple utility: +1 for winning, -1 for losing, 0 for a draw
∗ More complex cases: points won, money, ...

– We want to find a strategy (i.e. a way of picking moves) that
maximizes utility

COMP-424, Lecture 6 - January 23, 2013 6

Game Search Challenge

• Not quite the same as simple searching

• There is a malicious opponent!

– It is trying to make things good for itself, and bad for us
– We have to simulate the opponent’s decision

• Main idea: utility from a single agent’s perspective

– Define a max player (who wants to maximize its utility)
– And a min player (who wants to minimize it).

COMP-424, Lecture 6 - January 23, 2013 7

Example: Tic-Tac-Toe

!"#$#"% &'()"#*(+,--#.(-+-)*/0-+"*+$0,10-2++

3

4*/+50/*+-'6+.,60-7+%*'+8,10+,('"#$#"%+&'()"#*(+"8,"+,--#.(-+1,$'0- ,))*/9#(.+"*+

:*#("+*&+1#0;+*&+:$,%0/+<+=>?2

@$,%0/+<+#-+"/%#(.+"*+6,A#6#50+"8#-+'"#$#"%+&(7+@$,%0/+3+"/#0-+"*+6#(#6#502

B6:*/",("+CDEFG+H0/0+;0+,--'60 :$,%0/-+),(+-00+"*+"80+I*""*6+*&+"80+-0,/)8+"/00+

,(9+:$,%+*:"#6,$$%

COMP-424, Lecture 6 - January 23, 2013 8

Minimax Search

• Expand a complete search tree, until terminal states have been reached
and their utilities can be computed

• Go back up from the leaves towards the current state of the game

– At each min node, back up the worst value among children
– At each max node, back up the best value among children

!"#$%&'$()$*$+,-#$./,+$,"#$,.$01#$%&*'#/)2$$31()$()$*4%&'$0/##5$6*7$+*8#)$,"#$

+,-#$*"9$6("$+*8#)$,"#$+,-#2

6*7$()$:)0 %&*'#/$;1,$0/(#)$0,$+*7(+(<#$=0(&(0'2$$>#%/#)#"0#9$?'$0/(*"@&#$=%

6("$()$4"9 %&*'#/$;1,$0/(#)$0,$+("(+(<#$=0(&(0'2$$>#%/#)#"0#9$?'$0/(*"@&#$9,;"

AB,0*0(,"5$=%$0/(*"@&#$()$6CDE$("-#/0#9$0/(*"@&#$()$6FBG

H

!

COMP-424, Lecture 6 - January 23, 2013 9

Minimax Algorithm

Operator MinimaxDecision ()

1. For each legal operator o:

(a) Apply the operator o and obtain the new game state s

(b) Value[o] = MinimaxValue(s)

2. Return the operator with the highest value Value[o]

double MinimaxValue (s)

1. if isTerminal(s) return Utility(s);

2. For each state s� ∈ Successors(s), Value(s�) = MinimaxValue(s�)

3. If Max is to move in s, return maxs� Value(s
�)

4. If Min is to move in s, return mins� Value(s
�)

COMP-424, Lecture 6 - January 23, 2013 10

Properties of Minimax Search

• Complete if the game tree is finite

• Optimal against an optimal opponent

Otherwise, we do not know!

• Time complexity O(bm)

• Space complexity O(bm) (because search goes depth-first, and at each
of the m levels we keep b candidate moves)

• Why not use minimax to solve chess for example?

For chess, b ≈ 35, m ≈ 100 for “reasonable” games, so an exact solution
is impossible

COMP-424, Lecture 6 - January 23, 2013 11

Coping with Resource Limitations

• Suppose we have 100 seconds to make a move, and we can search 104

nodes per second

– That means we have to limit the search to 106 nodes before choosing
a move.

• Standard approach:

– Use a cutoff test (e.g. based on depth limit)
– Use an evaluation function (akin to a heuristic) to estimate the value

of nodes where we cut off the search

• This resembles real-time search

COMP-424, Lecture 6 - January 23, 2013 12

Evaluation Functions

• An evaluation function v(s) represents the “goodness” of a board state
s (i.e. the chance of winning from that position)

• If the features of the board can be judged independently, then a good
choice is a weighted linear function:

v(s) = w1f1(s) + w2f2(s) + · · ·+ wnfn(s)

where s is the board state

• This can be given by the designer or learned from experience

COMP-424, Lecture 6 - January 23, 2013 13

Example: Chess

!"#$%"&'()*(+,-(.&/'0"(+('1#'&"('234$(5'#6'*30.57'8.,%"&57'9,5"#*57'(&:;':#-('

6+#-<'=3.'>#$'&",.8'#6'03>5'&#'%(.(+3&('&"(5('234$(5<

?@

More sophisticated: Linear evaluation function w1f1(s) + w2f2(s) + . . .

where, e.g.

• w1 = 9 with f1(s) = (nr. white queens) - (nr. black queens) etc.

• w2 = 12 with f2(s) = nr. of available moves (mobility)

• w3 = −12 f3(s)=nr, available moves for opponents (it is bad for the
opponent to have many choices)

• . . .

COMP-424, Lecture 6 - January 23, 2013 14

How Precise Should the Evaluation Function Be?

• Evaluation function is only approximate, and is usually more accurate for
positions close to the end of the game

• The move chosen is the same if we apply a monotonic transformation to
the evaluation function!

8

COMP-424: Artificial intelligence Joelle Pineau15

Example: Chess

• Linear evaluation function: v(s) = w1f1(s) + w2f2(s)

w1 = 9 f1(s) = (# white queens) - (# black queens)

w2 = 3 f2(s) = (# white pawns) - (# black pawns)

Black to move

White slightly better

White to move

Black winning

COMP-424: Artificial intelligence Joelle Pineau16

How precise should the evaluation fn be?

• Evaluation function is only approximate, and is usually better if we are

close to the end of the game.

• Move chosen is the same if we apply a monotonic transformation to the

evaluation function.

• Only the order of the numbers matter: payoffs in deterministic games act

as an ordinal utility function.
• Only the order of the numbers matters: payoffs in deterministic games
act as an ordinal utility function

COMP-424, Lecture 6 - January 23, 2013 15

Cutting the Search Effort

• Evaluation functions help us make a decision without searching until the
end of the game

• Imagine a MinimaxCutoff algorithm, which is the same as MinimaxValue,
except it goes to some maximum depth m and uses the evaluation
function on those nodes (instead of going to the end of the game and
using the correct utility)

• How many moves can we search ahead in chess?

106 nodes with b = 35 allows us to search m = 4 moves ahead!

COMP-424, Lecture 6 - January 23, 2013 16

Minimax Cutoff in Chess

• 4-ply search gives a pretty bad chess player!

– 4-ply ≈ human novice
– 8-ply ≈ human master, typical PC
– 12-ply ≈ Deep Blue, Kasparov

• Human experts tend to search very few lines of play, but they search
them very deeply!

• Main idea: use pruning!

COMP-424, Lecture 6 - January 23, 2013 17

α-β pruning example

!"#$%&'()'&*%()&+,-.'/0%#(+)"1'23)45'6%'7)'")('"%%7'()'.))8'-('(*%')(*%&'")7%#'9&):'

(*%':+77.%';&-",*'-9(%&'#%%+"<'2=4>';%,-0#%'$%'8")$')0&'?@3')AA)"%"('$+..'#%.%,('

#):%(*+"<'(*-('*-#'-(':)#('-'A-B)0(')9'='9)&'0#>'-"7'$%',-"'-.&%-7B'<%('C';B'<)+"<'

.%9(5

D

• Suppose the leftmost subtree has been searched, and Max knows that
the value of its move there is 3

• Searching the center tree, Max discovers than Min has a move of value
2, so Min can get a move of value ≤ 2 in this subtree

• But this is worse for Max!
• Max would never take this move, since it has a better alternative, so
there is no point in searching this subtree further

COMP-424, Lecture 6 - January 23, 2013 18

α-β pruning

• Standard technique for deterministic, perfect information games

• The idea is similar to α-pruning: if a move estimate looks worse than
another choice we already have, discard it

• The algorithm is like minimax, but keeps track of the best leaf value for
the Max palyer (α) and the best value for the Min player (β)

• If the best move at a node cannot change, regardless of what we find by
searching, then no need to search further!

COMP-424, Lecture 6 - January 23, 2013 19

α-β Algorithm

Instead of MinimaxValue, we have two functions, MaxValue and MinValue,
which update the two cutoffs differently

double MaxValue(s, α, β)
1. If cutoff(s) return Evaluation(s)
2. For each s� in Successors(s)
(a) α ← max(α,MinValue(s�,α,β))
(b) If α ≥ β return β

3. Return α

double MinValue(s, α, β)
1. If cutoff(s) return Evaluation(s)
2. For each s� in Successors(s)
(a) β ← min(β,MaxValue(s�,α,β))
(b) If α ≥ β return α

3. Return β

COMP-424, Lecture 6 - January 23, 2013 20

Example

!"#$% %&'()*+%(%,*(-&-+%"-.*'(+/(&*0%+-1*(%&'(#/2-+-1*(-&

3

Initialize α and β

COMP-424, Lecture 6 - January 23, 2013 21

Example

!"

We search the first move for Max

COMP-424, Lecture 6 - January 23, 2013 22

Example

!"#$"%#%&"#'"%(#)*#%&+$#,+-#-)."#%)#%&"#,(/#0(12"#)*#+%$#$233"$$)45

66

We discovered a move of value 3 for Min, so Max’s value for this move will
be at most 3

COMP-424, Lecture 6 - January 23, 2013 23

Example

!"

Now we see a move of value 12 for Min, but it already has a better option,
so no changes are made

COMP-424, Lecture 6 - January 23, 2013 24

Example

!"#$%&"#'"(")*+,"'#($"#&%-."#/0#($"#-"0(#*/&"#,/'"#+1#23#1/#4"#1"(#%-5$%#6#7"(%#6#

2#%,'#5)/5/8%("#.54%)'19

:2

We finished searching all of Min’s move on this branch, and figured out
that the best Max can hope for is to get a 3 (if Min plays optimally)

COMP-424, Lecture 6 - January 23, 2013 25

Example

!"#$%&&#'()*#+,"#-#+(#(./#01''2"#*('"#&"%/3,4#5"3%.&"#)"#6*()#)"#3%*#%3,1"7"#

1+8

9:

Now we are about to search Max’s middle move

COMP-424, Lecture 6 - January 23, 2013 26

Example

!"#$%&'$#() *+,$-#,'+.#&/0.+1

23

Min has a move of value 2, so Max’s value for this branch must be ≤ 2.
Hence, Max should never take this move, and no further search can change

this decision. The subtree is pruned off

COMP-424, Lecture 6 - January 23, 2013 27

Example

!"

Proceed to Max’s rightmost move

COMP-424, Lecture 6 - January 23, 2013 28

Example

!"#$%&'#()*"+%,#-.#/&0%$#(.#*(1.#$2#0.$#34

35

We found a move for Min of value 14, so this move looks like it could be
better for Max than its current value of 3

COMP-424, Lecture 6 - January 23, 2013 29

Example

!"#$#%$&%%$'(

)*

Max could still get a 5 on this move

COMP-424, Lecture 6 - January 23, 2013 30

Example

!"#$#%$&%%$'($)*$+,%$-./,+$0-123,$,14$5"-%$2"4%&6$"-$.*$#%$7""8%4 1+$+,1+$2"4%$*.-&+

#%$3"974$:-92% 1&$"9-$17:,1$;<$0%+1

''

We finished searching, this last move was not as good as hoped. The
optimal play gives Max a value of 3, on the leftmost move

COMP-424, Lecture 6 - January 23, 2013 31

Example: Important lessons

!"#$#%$&%%$'($)*$+,%$-./,+$0-123,$,14$5"-%$2"4%&6$"-$.*$#%$7""8%4 1+$+,1+$2"4%$*.-&+

#%$3"974$:-92% 1&$"9-$17:,1$;<$0%+1

''

• Order matters! On the middle branch, nodes were ordered well and we
pruned a lot; on the right branch, the order was bad and there was no
proning

• The best moves were same as returned by Mimimax (it can be proved
that this is always true for an optimal opponent)

COMP-424, Lecture 6 - January 23, 2013 32

Properties of α-β Pruning

• Pruning does not affect the final result!
• Good move ordering is key to the effectiveness of pruning

– With bad move ordering complexity is ≈ O(bm) (nothing pruned)
– With perfect ordering, the time complexity is ≈ O(bm/2) (because we

cut off the branching at every other level)
∗ Means we double the search depth for the same resources
∗ In chess (and other games) this is the difference between a novice
and an expert player

– On the average, O(b3m/4) (if we expect to find the max or min after
b/2 expansions)

– Randomizing the move ordering can achieve the average case
– Evaluation function can be used to give a good initial ordering for the

nodes
• α-β pruning demonstrates the value of reasoning about which
computations are important.

COMP-424, Lecture 6 - January 23, 2013 33

Deep Blue (IBM)

• Specialized chess processor, with special-purpose memory organization

• A very sophisticated evaluation function, with expert features and hand-
tuned weights

• Database of opening/closing moves

• Uses a version of α-β pruning with undisclosed improvements, which
allow searching some lines up to 40 ply deep.

• Can search over 200 million positions per second!

• Overall, an impressive engineering feat

• Now, several computer programs running on regular hardware are on par
with human champions (e.g. Fritz).

COMP-424, Lecture 6 - January 23, 2013 34

Chinook (Schaeffer, U. of Alberta)

• Plain α-β search, performed on standard PCs

• Evaluation function based on expert features of the board

• Opening database

• Huge endgame database!

Chinook has perfect information for all checkers positions involving 8 or
fewer pieces on the board, a total of 443,748,401,247 positions.

• Only a few moves in the middle of the game were actually searched!

• They have now done an exhaustive search for checkers, and discovered
that optimal play leads to a draw

COMP-424, Lecture 6 - January 23, 2013 35

Logistello (Buro, U. of Alberta)

• Opening book, continuously updated based on the games played (≈
23000 games)

• α-β search with a linear evaluation function:

– Hand-selected features
– 1.5 million weights tuned by learning during self-play games

• Thinks during the opponent’s time

• Search speed (on a Pentium-Pro 200) ≈ 160,000 nodes/sec in the middle
game, ≈ 480,000 nodes/sec in the endgame

• Search depth ≈ 18-23 ply in the middle game

• Win/loss/draw determination at 26-22 empty squares, exact score 1-2
ply later

COMP-424, Lecture 6 - January 23, 2013 36

Drawbacks of α-β

• If the branching factor is really big, search depth is still too limited

E.g. in Go, where branching factor b ≈ 300

• Optimal play is guaranteed against an optimal opponent if search
proceeds to the end of the game

• But the opponent may not be optimal!

• If heuristics are used, this assumption turns into the opponent playing
optimally according to the same heuristic function as the player

• This is a very big assumption! What to do if the opponent plays very
differently?

COMP-424, Lecture 6 - January 23, 2013 37

Summary

• Games are a cool, realistic testbed for AI ideas

• Search is similar to A∗ (using heuristics), but one needs to consider that
the opponent will try to harm

• It is crucial to decide where to spend the computation effort, and prune
unimportant paths

• Computers dominate many classical, perfect-information games, using
α− β pruning

• However, this may not be good enough in games with very large branching
factor (e.g. Go) or imperfect information / stochastic games

• Next time: Monte Carlo tree search

COMP-424, Lecture 6 - January 23, 2013 38

