Lecture 4: Search for Optimization Problems

e What is an optimization problem?
e Local search algorithms:

— Hill climbing

— Simulated annealing

COMP-424, Lecture 4 - January 16, 2013

Optimization problems

e There is some combinatorial structure to the problem
e Constraints may have to be satisfied

e But there is also a cost function, which we want to optimize!

Eval(X)

X*
e Or at least, we want a “good” solution

e Searching all possible solutions is infeasible

COMP-424, Lecture 4 - January 16, 2013

Canonical example: Traveling Salesman Problem (TSP)

X,={1253674}

Given: a set of vertices and the distances between each pair of vertices

Goal: construct the shortest path that touches every vertex exactly once

A path that touches every vertex exactly once is called a tour.

In the example above, X7 is a tour, but not the optimal tour.

COMP-424, Lecture 4 - January 16, 2013 3

Real-life examples of optimization problems

e Scheduling

— Given: a set of tasks to be completed, with durations and with mutual
constraints (e.g. task ordering; joint resources)

— Goal: generate the shortest schedule (assignment of start times to
tasks) possible

e VLSI circuit layout

— Given: a board, components and connections
— Goal: place each component on the board such as to maximize energy
efficiency, minimize production cost...

e In Al: learning, e.g.

— Given: customers described by their characteristics (age, occupation,
gender, location, etc) and their previous book purchases

— Goal: find a function from customer characteristics to books which
maximizes the probability of purchase

COMP-424, Lecture 4 - January 16, 2013 4

Characteristics of optimization problems

e Problem is described by a set of states (configurations) and an evaluation
function

E.g. in TSP, a tour is a state, and the length of the tour is the evaluation
function (to minimize)

e The state space is too big to enumerate all states (or the evaluation may
be expensive to compute for all states)

E.g. in TSP, the state space is (n — 1)!/2, where n is the number of
vertices to connect

e We are only interested in the best solution, not the path to the solution
(unlike in A*)

e Often it is easy to find some solution to the problem

e Often it is provably very hard (NP-complete) to find the best solution

COMP-424, Lecture 4 - January 16, 2013 5

Types of search methods

1. Constructive methods: Start from scratch, build up a solution

E.g. In TSP, start at the start city and add cities until a complete tour
is formed

2. lterative improvement/repair methods: Start with a solution (which may
be “broken” or suboptimal) and improve it

E.g. In TSP, start with a complete tour, and keep swapping cities to
improve the cost

In both cases, the search is local: we have just one solution in mind, and
we look for alternatives in the "vicinity” of that solution

3. Global search: Start from multiple states that are far apart, and go all
around the state space

COMP-424, Lecture 4 - January 16, 2013 6

Local search generic algorithm

1. Start from an initial configuration X
2. Repeat until satisfied:

(a) Generate the set of neighbors of X; and evaluate them
(b) Select one of the neighbors, X; 4
(c) The selected neighbor becomes the current configuration

Choosing well the highlighted elements is crucial for a good algorithm!

COMP-424, Lecture 4 - January 16, 2013

Example

! |
Local optimum
Eval(X*) 2 Eval(X)
for all Xs in
Neighbors(X)

Global Gptimum
Eval(X*) 2 Eval(X)
for all Xs

60

50

40

30

20

S$={1,...,100}
Neighbors(X) = {X-1,X+1}

How should we move around between solutions?

COMP-424, Lecture 4 - January 16, 2013

Hill climbing (greedy local search, gradient
ascent/descent)

1. Start at initial configuration X and let E be the value of X (high is
good)

2. Repeat

(a) Let X;,i =1...n be the set of neighboring configurations and E; be
the corresponding values

(b) Let E,,q0p = max; E; be the value of the best successor configuration
and 7,4, = arg max; F; be the index of the best configuration.

(c) If Bz < E, return X (we are at a local optimum)

(d) Else let X < X, and FE <+ Ep4.

COMP-424, Lecture 4 - January 16, 2013

Good things about hill climbing

e Trivial to program!

e Requires no memory of where we've been (because it does no
backtracking)

e It is important to have a “good” set of neighbors (not too many, not
too few)

COMP-424, Lecture 4 - January 16, 2013 10

Example: TSP, swapping two nodes

“2-change” >

Invert the order of
the corresponding
0 vertices

O(n?) comes from the fact that we have n edges in a tour, and choose two

n :
of them to swap, so there are (9 > possible next tours

COMP-424, Lecture 4 - January 16, 2013 11

Example: TSP, swapping three nodes

“3-change” > O(N?)
neighborhood

3
edges, more than one possible neighbor

There are (n) combinations of edges to choose, and for each set of

COMP-424, Lecture 4 - January 16, 2013 12

Neighborhood trade-off

A smaller neighborhood means fewer neighbors to evaluate (so cheaper
computation, but possibly worse solutions)

A bigger neighborhood means more computation, but maybe fewer local
optima, so better final result

Defining the set of neighbors is a design choice (like choosing the heuristic
for A*) and has a crucial impact on performance

e For realistic problems, there may not be a unique way of defining the
neighbors
COMP-424, Lecture 4 - January 16, 2013 13

Problems with hill climbing

e Can get stuck in a local maximum

e Can get stuck on a plateau

e Relies very heavily on having a good neighborhood function and a
good evaluation function, in order to get an easy-to-navigate “solution
landscape”

COMP-424, Lecture 4 - January 16, 2013 14

Improvements to hill climbing

e Quick fix: when stuck in a plateau or local optimum, use random restarts

e Better fix: Instead of picking the best move pick any move that produces
an improvement

This is called randomized hill climbing
e But sometimes we may really need to pick apparently bad moves!

Eval(X)

E.g. Assuming salary is the evaluation function, you can pick a dead-end
job but which pays well right away, vs. picking a job that pays less now,
but you learn skills that may lead to a better job later

COMP-424, Lecture 4 - January 16, 2013 15

Simulated annealing

e Allows some apparently “bad moves”, in the hope of escaping local
maxima

e Decrease the size and frequency of “bad moves” over time
e Algorithm sketch

1. Start at initial configuration X of value E (high is good)
2. Repeat:

(a) Let X; be a random neighbor of X and E; be its value

(b) If E < E; thenlet X + X; and F + E;

(c) Else, with some probability p, still accept the move: X <« X; and

e Best solution ever found is always remembered

COMP-424, Lecture 4 - January 16, 2013 16

What value should we use for p?

E=E(X)

E’= E(X)

Suppose you are at a state of value E and are considering a move to a
state of lower value E’

If E — E’ is large, you are likely close to a promising maximum, so you
should be less likely to want to go downhill

If E—FE’ is small, the closest maximum may be shallow, so going downhill
is not as bad

We may want different neighbors with similar value to be equally likely
to be picked

As we get more experience with the problem, we may want to settle on
the solution (landscape has been explored enough)

COMP-424, Lecture 4 - January 16, 2013 17

Selecting moves in simulated annealing

If the new value E; is better than the old value E, move to X;

If the new value is worse (E; < E) then move to the neighboring solution
with probability: (E — Ez)
exp | ——

T
This is called the Boltzmann distribution
T > 0 is a parameter called temperature, which typically starts high,
then decreases over time towards 0
If T"is high, exponent is close to 0 and probability of accepting any move
is close to 1
If T" is very close to 0, the probability of moving to a worse solution is
almost 0.

We can decrease T' by multiplying with a constant a < 1 on every move
(or some other, fancier “schedule”)

COMP-424, Lecture 4 - January 16, 2013 18

Where does the Boltzmann distribution come from?

e For a solid, at temperature 7', the probability of moving between two
states of energy difference AF is:

o~ AE/KT
e |f temperature decreases slowly, it will reach an equilibrium, at which the
probability of being in a state of energy E' is proportional to:

o—B/kT

e So states of low energy (relative to T') are more likely

e In our case, states with better value will be more likely

COMP-424, Lecture 4 - January 16, 2013 19

Properties of simulated annealing

Note that larger
deviations from
uphill search are
allowed at high
temperature

» Temperature

__‘_‘_‘_‘%\ Iterations

] 100 200 300 400 500 600 700 800 900

e When T is high, the algorithm is in an exploratory phase (even bad
moves have a high chance of being picked)

e When T is low, the algorithm is in an exploitation phase (the “bad”
moves have very low probability

e If T' is decreased slowly enough, simulated annealing is guaranteed to
reach the best solution in the limit (but there is no guarantee how fast...)

COMP-424, Lecture 4 - January 16, 2013 20

COMP-424, Lecture 4 -

Example

100!

- T = 15.8975

100]

or T = 12877

/

Iteration 150:
Random downhill
moves allow us to
escape the local
extremum

Starting point: We move
most of the time uphill

0 10 20 30 40 s 60 70 8 80 100 0 10 20 3 4 s 60 70 8 90 100

- T = 11.5893 o T = 3.2731
m \
ﬂ

30,

0 10 20 30 4 5 6 70 8 % 100

January 16, 2013

21

TSP example

N =13 nodes (in a circle)
Repeat K = 100N times
Optimal configuration has E = 25

Starting configuration has E = 55

COMP-424, Lecture 4 - January 16, 2013

22

TSP example: Configurations

9.0.0.0.0.0
QOOOCHHOTHD
OO MDA
RO RO
TR DI
O e g0 LRSS L o
FERNLLRIRE0

The initial configuration is bottom right, final one is top left

COMP-424, Lecture 4 - January 16, 2013

23

TSP example: Energy

Note that larger deviations from
downhill search are allowed at
high temperature

n L L n L T \
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Iterations

COMP-424, Lecture 4 - January 16, 2013

24

Simulated annealing in practice

Very useful algorithm, used to solve very hard optimization problems:

— E.g. What gene network configuration best explains observed
expression data
— E.g. Scheduling large transportation fleets

The temperature annealing schedule is crucial (so it needs to be tweaked)

— Cool too fast and you do not reach optimality
— Slow cooling leads to very slow improvements

On large problems, simulated annealing can take days or weeks

Simulated annealing is an example of a randomized search or Monte
Carlo search

Basic idea: run around through the environment and explore it, instead
of systematically sweeping

Very powerful for large domains!

COMP-424, Lecture 4 - January 16, 2013 25

Summary

Optimization problems are widespread and important

We are only interested in the final result, rather than the path to it

It is unfeasible to enumerate all possible solutions

Instead we can do a /ocal search and move in the most promising
direction:

— Hill climbing (a.k.a. gradient ascent/descent) always moves in the
(locally) best direction

— Simulated annealing allows moves downhill

Next time: global search, looking for solutions from multiple points in

parallel

— Genetic algorithms use an evolutionary-inspired procedure

— Ant-colony optimization and other methods are also possible.
Important lesson: the power of randomness!

This is a key ingredient for escaping local optima

COMP-424, Lecture 4 - January 16, 2013 26

